...
首页> 外文期刊>Water resources research >The compressed state Kalman filter for nonlinear state estimation: Application to large-scale reservoir monitoring
【24h】

The compressed state Kalman filter for nonlinear state estimation: Application to large-scale reservoir monitoring

机译:用于非线性状态估计的压缩状态卡尔曼滤波器:在大型油藏监测中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reservoir monitoring aims to provide snapshots of reservoir conditions and their uncertainties to assist operation management and risk analysis. These snapshots may contain millions of state variables, e.g., pressures and saturations, which can be estimated by assimilating data in real time using the Kalman filter (KF). However, the KF has a computational cost that scales quadratically with the number of unknowns, m, due to the cost of computing and storing the covariance and Jacobian matrices, along with their products. The compressed state Kalman filter (CSKF) adapts the KF for solving large-scale monitoring problems. The CSKF uses N preselected orthogonal bases to compute an accurate rank-N approximation of the covariance that is close to the optimal spectral approximation given by SVD. The CSKF has a computational cost that scales linearly in m and uses an efficient matrix-free approach that propagates uncertainties using N + 1 forward model evaluations, where N m. Here we present a generalized CSKF algorithm for nonlinear state estimation problems such as CO2 monitoring. For simultaneous estimation of multiple types of state variables, the algorithm allows selecting bases that represent the variability of each state type. Through synthetic numerical experiments of CO2 monitoring, we show that the CSKF can reproduce the Kalman gain accurately even for large compression ratios (m/N). For a given computational cost, the CSKF uses a robust and flexible compression scheme that gives more reliable uncertainty estimates than the ensemble Kalman filter, which may display loss of ensemble variability leading to suboptimal uncertainty estimates.
机译:储层监测旨在提供储层状况及其不确定性的快照,以协助运营管理和风险分析。这些快照可能包含数百万个状态变量,例如压力和饱和度,可以通过使用卡尔曼滤波器(KF)实时吸收数据来估算这些状态变量。但是,由于计算和存储协方差矩阵和雅可比矩阵及其乘积的成本,KF的计算成本随未知数m的平方成正比。压缩状态卡尔曼滤波器(CSKF)使KF适应解决大规模监控问题。 CSKF使用N个预选的正交基来计算协方差的精确秩N近似值,该近似值接近于SVD给出的最佳频谱近似值。 CSKF的计算成本在m范围内呈线性比例,并使用有效的无矩阵方法,该方法使用N + 1个正向模型评估来传播不确定性,其中N m。在这里,我们提出了一种针对非线性状态估计问题(如CO2监测)的广义CSKF算法。为了同时估计多种类型的状态变量,该算法允许选择代表每种状态类型变异性的碱基。通过CO2监测的综合数值实验,我们表明,即使在大压缩比(m / N)的情况下,CSKF仍可以准确地再现卡尔曼增益。对于给定的计算成本,CSKF使用的鲁棒且灵活的压缩方案比集合卡尔曼滤波器提供更可靠的不确定性估计,后者可能会显示集合可变性的损失,导致不确定性估计不理想。

著录项

  • 来源
    《Water resources research》 |2015年第12期|9942-9963|共22页
  • 作者单位

    Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA|Stanford Univ, Jen Hsun Huang Engn Ctr, Inst Computat & Math Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA|Stanford Univ, Jen Hsun Huang Engn Ctr, Inst Computat & Math Engn, Stanford, CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号