...
首页> 外文期刊>Water resources research >Optimizing embedded sensor network design for catchment-scale snow-depth estimation using LiDAR and machine learning
【24h】

Optimizing embedded sensor network design for catchment-scale snow-depth estimation using LiDAR and machine learning

机译:使用LiDAR和机器学习优化嵌入式传感器网络设计以进行集水规模雪深估算

获取原文
获取原文并翻译 | 示例
           

摘要

We evaluate the accuracy of a machine-learning algorithm that uses LiDAR data to optimize ground-based sensor placements for catchment-scale snow measurements. Sampling locations that best represent catchment physiographic variables are identified with the Expectation Maximization algorithm for a Gaussian mixture model. A Gaussian process is then used to model the snow depth in a 1 km(2) area surrounding the network, and additional sensors are placed to minimize the model uncertainty. The aim of the study is to determine the distribution of sensors that minimizes the bias and RMSE of the model. We compare the accuracy of the snow-depth model using the proposed placements to an existing sensor network at the Southern Sierra Critical Zone Observatory. Each model is validated with a 1 m(2) LiDAR-derived snow-depth raster from 14 March 2010. The proposed algorithm exhibits higher accuracy with fewer sensors (8 sensors, RMSE 38.3 cm, bias=3.49 cm) than the existing network (23 sensors, RMSE 53.0 cm, bias=15.5 cm) and randomized placements (8 sensors, RMSE 63.7 cm, bias=24.7 cm). We then evaluate the spatial and temporal transferability of the method using 14 LiDAR scenes from two catchments within the JPL Airborne Snow Observatory. In each region, the optimized sensor placements are determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys is then compared to 100 configurations of sensors selected at random. We find the error statistics (bias and RMSE) to be more consistent across the additional surveys than the average random configuration.
机译:我们评估了一种机器学习算法的准确性,该算法使用LiDAR数据优化集水规模降雪测量的地面传感器位置。对于高斯混合模型,使用“期望最大化”算法来确定最能代表流域生理变量的采样位置。然后使用高斯过程对网络周围1 km(2)区域的积雪深度进行建模,并放置其他传感器以使模型不确定性最小化。该研究的目的是确定使模型的偏差和RMSE最小的传感器的分布。我们使用拟议的布局将雪深模型的准确性与南部塞拉利昂临界区天文台的现有传感器网络进行了比较。从2010年3月14日起,每个模型都使用1 m(2)LiDAR得出的雪深栅格进行了验证。与现有网络相比,所提出的算法具有更少的传感器(8个传感器,RMSE 38.3 cm,bias = 3.49 cm),具有更高的精度( 23个传感器,RMSE 53.0厘米,偏差= 15.5厘米)和随机放置(8个传感器,RMSE 63.7厘米,偏差= 24.7厘米)。然后,我们使用JPL机载雪天文台两个集水区的14个LiDAR场景,评估了该方法的时空传递性。在每个区域中,使用当年的第一个可用雪栅格确定优化的传感器位置。然后将其余LiDAR调查中的准确性与随机选择的100种传感器配置进行比较。我们发现,在其他调查中,误差统计(偏差和RMSE)比平均随机配置更为一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号