首页> 外文期刊>Water resources research >Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate
【24h】

Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate

机译:气候变化中美国太平洋西北地区可能出现的最大降水

获取原文
获取原文并翻译 | 示例
       

摘要

The safety of large and aging water infrastructures is gaining attention in water management given the accelerated rate of change in landscape, climate, and society. In current engineering practice, such safety is ensured by the design of infrastructure for the Probable Maximum Precipitation (PMP). Recently, several numerical modeling approaches have been proposed to modernize the conventional and ad hoc PMP estimation approach. However, the underlying physics have not been fully investigated and thus differing PMP estimates are sometimes obtained without physics-based interpretations. In this study, we present a hybrid approach that takes advantage of both traditional engineering practice and modern climate science to estimate PMP for current and future climate conditions. The traditional PMP approach is modified and applied to five statistically downscaled CMIP5 model outputs, producing an ensemble of PMP estimates in the Pacific Northwest (PNW) during the historical (1970-2016) and future (2050-2099) time periods. The hybrid approach produced consistent historical PMP estimates as the traditional estimates. PMP in the PNW will increase by 50%30% of the current design PMP by 2099 under the RCP8.5 scenario. Most of the increase is caused by warming, which mainly affects moisture availability through increased sea surface temperature, with minor contributions from changes in storm efficiency in the future. Moist track change tends to reduce the future PMP. Compared with extreme precipitation, PMP exhibits higher internal variability. Thus, long-time records of high-quality data in both precipitation and related meteorological fields (temperature, wind fields) are required to reduce uncertainties in the ensemble PMP estimates.
机译:鉴于景观,气候和社会变化速度的加快,大型且老化的水基础设施的安全性正在水管理中受到关注。在当前的工程实践中,这种安全性是通过可能最大降水量(PMP)的基础结构设计来确保的。近来,已经提出了几种数值建模方法来使常规和临时PMP估计方法现代化。但是,尚未对基础物理学进行全面研究,因此,有时在没有基于物理学的解释的情况下,有时会获得不同的PMP估算值。在这项研究中,我们提出了一种混合方法,该方法利用了传统工程实践和现代气候科学的优势来估算当前和未来气候条件下的PMP。对传统的PMP方法进行了修改,并将其应用于五个按统计比例缩减的CMIP5模型输出,从而在历史(1970-2016)和未来(2050-2099)时间段内,西北太平洋(PNW)产生了一组PMP估计值。混合方法产生的历史PMP估计值与传统估计值一致。在RCP8.5方案下,到2099年,PNW中的PMP将增加当前设计PMP的50%30%。增加的大部分是由变暖引起的,变暖主要通过增加海面温度来影响水分的可利用性,而未来风暴效率的变化则贡献很小。潮湿的轨道变化往往会降低未来的PMP。与极端降水相比,PMP具有更高的内部变异性。因此,需要长期记录降水和相关气象领域(温度,风场)中的高质量数据,以减少整体PMP估算中的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号