...
首页> 外文期刊>Water resources research >A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles
【24h】

A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles

机译:在不利附着条件下提升胶体运输的二项式建模方法:非单调保留曲线的紧急预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.
机译:我们使用了最近开发的简单数学网络模型来放大在不利附着条件下确定的孔尺度胶体转运信息。我们在升级过程中分别出现了经典的对数线性和非单调保留曲线,分别在有利和不利依附条件下得到了很好的报告。该网络的主要属性是大量孔隙流体,近地表流体域(NSFD)和附着(被视为不可逆)之间的胶体转移。该网络模型考虑了胶体转移到降级颗粒的NSFD以及在后流停滞区(RFSZs)通过扩散或排出而重新夹带到大孔流体中。该模型通过一系列随机试验在Happel细胞的一维(1-D)网络中描述了胶体运输,该网络包含颗粒和孔。使用利用二项式系数的组合分析,我们从孔隙尺度信息中得出了胶体在网络中的理论停留时间分布。当不满足经典过滤理论的条件时,即当维持NSFD胶体数量时,就会发生从对数线性到非单调保留曲线的转变。然后,可能会产生附着的和NSFD胶体的非单调保留曲线。浓度最大值下移取决于特定的参数选择。在附着力可忽略的条件下,浓度最大值还显示了时间上的下降梯度(连续洗脱),这解释了实验观察到的附着力不足细菌的保留浓度最大值的下降梯度传递。对于零夹带的情况,我们开发了形状和最大胶体保留曲线的闭合形式的解析表达式。

著录项

  • 来源
    《Water resources research》 |2018年第1期|46-60|共15页
  • 作者单位

    Columbia Univ, Dept Environm Hlth Sci, New York, NY 10027 USA;

    Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号