...
首页> 外文期刊>Water Resources Management >Spatiotemporal Surface-Groundwater Interaction Simulation in South Florida
【24h】

Spatiotemporal Surface-Groundwater Interaction Simulation in South Florida

机译:南佛罗里达时空地表与地下水的相互作用模拟

获取原文
获取原文并翻译 | 示例

摘要

South Florida ecosystem is dictated by a large wetland, karst hydrogeology and extended coastal boundary with the Atlantic Ocean. The risks related to the ecosystem include: disruption of groundwater flow as a result of frequent sinkhole formation; flooding in urban areas as a result of the shallow water table; saltwater intrusion from the ocean; and excessive nutrient load to surficial water bodies and subsequently eutrophication because of the intensive utilization of wetlands for nutrient removal. Attempts to understand eco-hydrological processes primarily focus on extensive monitoring and use of distributed hydrological models. However, the relatively flat nature of the region and also the extended coastal boundary with the ocean, makes watershed-based approaches less realistic. A regional spatiotemporal groundwater level modeling approach was attempted using a Dynamic Factor Analysis (DFA) method. The daily water levels of 13 monitoring well sites from major hydrogeologic regions and different land uses were used to conduct the DFA analysis, and six dynamic factors were identified using minimum Akaike Information Criterion (AIC). Further exploratory analysis to relate the dynamic factors with physically attributable explanatory variables has helped to identify five of the major factors that govern the groundwater dynamics in south Florida. Three of the factors were attributable to the Lake Kissimmee water level in the north, Caloosahatcb.ee River water level in the west, and Hillsboro canal in the east. The other two factors identified were the regional averaged rainfall and soil moisture. The spatiotemporal simulation involved interpolation of the loadings of the dynamic factors using an inverse distance weighted method and convoluting with the dynamic factors. The result has shown a good fit with the maximum RMSE of 0.12 m. Retrieval of rainfall, soil moisture, and surface water level from satellite imagery makes spatiotemporal modeling of the groundwater level achievable.
机译:南佛罗里达的生态系统由广阔的湿地,岩溶水文地质学和与大西洋延伸的沿海边界所决定。与生态系统有关的风险包括:由于经常形成沉坑而破坏了地下水流;浅水位导致城市地区洪水泛滥;来自海洋的盐水入侵;以及由于大量利用湿地来去除养分,使表层水体的养分过剩,并随后发生了富营养化。试图了解生态水文过程的尝试主要集中在广泛监测和使用分布式水文模型上。但是,该地区相对平坦的性质以及与海洋的扩展沿海边界,使得基于分水岭的方法不太现实。尝试使用动态因子分析(DFA)方法进行区域时空地下水位建模。使用来自主要水文地质区和不同土地用途的13个监测井场的每日水位进行DFA分析,并使用最小Akaike信息准则(AIC)确定了六个动态因素。将动力因素与物理上可解释的变量联系起来的进一步探索性分析有助于确定控制佛罗里达州南部地下水动力的五个主要因素。其中三个因素可归因于北部的基西米湖水位,西部的Caloosahatcb.ee河水位和东部的希尔斯伯勒运河。确定的其他两个因素是区域平均降雨量和土壤湿度。时空模拟包括使用逆距离加权方法对动态因子的负荷进行插值,并与动态因子进行卷积。结果显示出良好的拟合度,最大RMSE为0.12 m。从卫星图像中检索降雨,土壤湿度和地表水位可以实现对地下水位的时空建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号