首页> 外文期刊>Water Research >Impact of coexistence of flocs and biofilm on performance of combined nitritation-anammox granular sludge reactors
【24h】

Impact of coexistence of flocs and biofilm on performance of combined nitritation-anammox granular sludge reactors

机译:絮凝物和生物膜共存对硝化-厌氧颗粒污泥反应器组合性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Nitrogen (N) removal from high-strength wastewater can be accomplished in single-stage combined nitritation-anammox reactors with suspended growth biomass composed of floccular sludge, granular sludge, or of any mix of these 2 different sludge fractions. To date, the influence of floccular biomass on granular sludge reactor performance and stability has not been investigated experimentally or numerically. To address this knowledge gap, two 1D multi-species models were developed in Aquasim to assess the importance of small levels of flocs in putatively granular sludge combined nitritation-anammox reactors for different bulk oxygen concentrations and organics loads. The models included the growth and decay of aerobic ammonium-oxidizing organism (AOO), nitrite-oxidizing organisms (NOO), heterotrophic organisms (OHO), and anammox organisms (AMO) in exclusively granular sludge reactors, and in granular sludge reactors with small levels (similar to 5% of total biomass) of flocs. While maximum N removal efficiencies were similar for both model structures, floc addition led to a lower optimal dissolved oxygen concentration (DO) as well as a narrower maximum N removal peak, suggesting that small levels of floccular material may decrease process robustness to bulk oxygen changes. For some DO levels, this led to drastic efficiency drops. Furthermore, floc addition also led to substantial segregation in activity and microbial population distribution, with AOO, NOO and OHO concentrated in flocs and AMO concentrated in granules. Increased organic loading (COD:N = 4:3) improved maximum N removal efficiency in both model structures, but yielded substantially different predictions for optimal DO setpoint and process robustness to variations in DO. Taken together, our results indicate that even small levels of floccular biomass in biofilm reactors can have profound implications for reactor performance and optimization and for segregation of linked microbial processes, and suggest that the common practice of neglecting small levels of floccular material in biofilm models and in practice may lead to erroneous predictions. (C) 2014 Elsevier Ltd. All rights reserved.
机译:高强度废水中的氮(N)去除可以在单级联合硝化-厌氧反应器中完成,该反应器具有由絮状污泥,颗粒状污泥或这两种不同污泥馏分的任意混合物组成的悬浮生长生物质。迄今为止,尚未通过实验或数值研究絮凝生物质对颗粒污泥反应器性能和稳定性的影响。为了解决这一知识鸿沟,Aquasim开发了两个一维多物种模型,以评估假定的颗粒污泥组合硝化-氨氧化反应器中不同水平的氧气对不同体积氧气浓度和有机物负荷的影响,其中少量絮凝物的重要性。这些模型包括需氧铵氧化生物(AOO),亚硝酸盐氧化生物(NOO),异养生物(OHO)和厌氧氨生物(AMO)在专门的颗粒污泥反应器和小颗粒污泥反应器中的生长和衰减。絮凝物的水平(约占总生物量的5%)。虽然两种模型结构的最大N去除效率相似,但絮凝物添加会导致较低的最佳溶解氧浓度(DO)以及更窄的最大N去除峰,这表明少量的絮凝物可能会降低工艺对大量氧气变化的鲁棒性。对于某些溶解氧水平,这会导致效率急剧下降。此外,絮凝剂的添加还导致活性和微生物种群分布的显着分离,其中AOO,NOO和OHO集中在絮凝物中,AMO集中在颗粒中。增加有机负荷(COD:N = 4:3)可提高两种模型结构中的最大氮去除效率,但对于最佳DO设定值和工艺对DO变化的鲁棒性,产生了实质上不同的预测。两者合计,我们的结果表明,即使生物膜反应器中的絮状生物量很小,也可能对反应器性能和优化以及相关微生物过程的分离产生深远的影响,并建议在生物膜模型和模型中忽略少量絮状物质的普遍做法和在实践中可能会导致错误的预测。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2015年第1期|127-139|共13页
  • 作者单位

    Eawag, Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Eawag, Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland|Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA;

    Eawag, Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland|ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Autotrophic nitrogen removal; Anammox; Granular sludge; Flocs; Aquasim; Numerical simulation;

    机译:自养脱氮厌氧氨氧化颗粒污泥絮凝剂Aquasim数值模拟;
  • 入库时间 2022-08-17 13:43:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号