...
首页> 外文期刊>Water Research >Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes
【24h】

Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes

机译:硫基反硝化:生物膜发展对反硝化通量的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Elemental sulfur (S-o) can serve as an electron donor for denitrification. However, the mechanisms and rates of S-o-based denitrification, which depend on a biofilm development on a solid S-o surface, are not well understood. We used completely-mixed reactors packed with S-o chips to systematically explore the behavior of S-o-based denitrification as a function of the bulk nitrate (NO3-) concentration and biofilm development. High-purity (99.5%) and agricultural-grade (90% purity) S-o chips were tested to explore differences in performance. NO3- fluxes followed a Monod-type relationship with the bulk NO3- concentration. For high-purity S-o, the maximum NO3- flux increased from 0.4 gN/m(2)-d at 21 days to 0.9 g N/m(2)-d at around 100 days, but then decreased to 0.65 gN/m(2)-d at 161 days. The apparent (extant) half saturation constant for NO3- K-Sapp, based on the bulk NO3- concentration and NO3- fluxes into the biofilm, increased from 0.1 mgN/L at 21 days to 0.8 mgN/L at 161 days, reflecting the increasing mass transfer resistance as the biofilm thickness increased. Nitrite (NO2-) accumulation became significant at bulk NO3- concentration above 0.2 mgN/L. The behavior of the agricultural-grade S-o was very similar to the high-purity S-o. The kinetic behavior of S-based denitrification was consistent with substrate counter-diffusion, where the soluble sulfur species diffuse from the S-o particle into the base of the biofilm, while NO3- diffuses into the biofilm from the bulk. Initially, the fluxes were low due to biomass limitation (thin biofilms). As the biofilm thickness increased with time, the fluxes first increased, stabilized, and then decreased. The decrease was probably due to increasing diffusional resistance in the thick biofilm. Results suggest that fluxes comparable to heterotrophic biofilm processes can be achieved, but careful management of biofilm accumulation is important to maintain high fluxes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:元素硫(S-o)可以用作反硝化的电子供体。然而,对于基于S-o的反硝化的机理和速率,其依赖于固体S-o表面上生物膜的发育,还没有被很好地理解。我们使用装有S-o芯片的完全混合反应器系统地研究了基于S-o的反硝化行为与总硝酸盐(NO3-)浓度和生物膜形成的关系。测试了高纯度(99.5%)和农业级(90%纯度)S-o芯片,以探索性能差异。 NO3-通量与总NO3-浓度呈Monod型关系。对于高纯度的So,最大的NO3-通量从21天的0.4 gN / m(2)-d增加到约100天的0.9 g N / m(2)-d,但随后降至0.65 gN / m( 2)-d在161天。基于总NO3-浓度和进入生物膜的NO3-通量,NO3-K-Sapp的表观(现有)半饱和常数从21天的0.1 mgN / L增加到161天的0.8 mgN / L,反映了随着生物膜厚度的增加,传质阻力增加。亚硝酸盐(NO2-)的积累在NO3-的浓度大于0.2 mgN / L时变得明显。农业级S-o的行为与高纯度S-o非常相似。基于S的反硝化的动力学行为与底物反扩散相符,其中可溶性硫物种从S-o颗粒扩散到生物膜的底部,而NO3-从主体扩散到生物膜。最初,通量由于生物量限制(薄的生物膜)而较低。随着生物膜厚度的增加,通量首先增加,稳定并随后减小。减少可能是由于在厚生物膜中扩散阻力的增加。结果表明,可以达到与异养生物膜过程相当的通量,但是仔细管理生物膜积聚对于维持高通量很重要。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2016年第1期|184-193|共10页
  • 作者单位

    Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA;

    Hampton Rd Sanitat Dist, POB 5911, Virginia Beach, VA 23471 USA;

    Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sulfur; Denitrification; Biofilm; Fluxes; Nitrite accumulation;

    机译:硫;反硝化;生物膜;通量;亚硝酸盐积累;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号