首页> 外文期刊>Water Research >Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies
【24h】

Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies

机译:全厂废水处理系统中磷转化的建模:控制和操作策略的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop,) is used as test platform upon which three different operational alternatives (A1, A2, A3) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium (Smix) and total suspended solids (XTSS) control strategy (A1) better adapts the system to influent dynamics, improves phosphate (Spa,) accumulation by phosphorus accumulating organisms (X-pAo) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (E-aeration) ( 21%). The addition of iron (X-Fecl3) for chemical P removal (A2) promotes the formation of ferric oxides (XHFO-H,XHFO-L), phosphate adsorption (XHFO-H,XHFO-L), co-precipitation (XHFO-H,XHFO-L) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m 3). This also has an impact on the sludge line, with hydrogen sulfide production (Gihs) reduced (36%) due to iron sulfide (Xpes) precipitation. As a consequence, there is also a slightly higher energy production (Eproduction) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A3) for P recovery reduces the quantity of P in the anaerobic digester supernatant returning to the water line and allows potential struvite (XMgNH4PO4) recovery ranging from 69 to 227 kg.day-1 depending on: (1) airflow (Qstripping); and, (2) magnesium ((IP.) addition. All the proposed alternatives are evaluated from an environmental and economical point of view using appropriate performance indices. Finally, some deficiencies and opportunities of the proposed approach when performing (plant-wide) wastewater treatment modelling/engineering projects are discussed. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文的目的是报告控制/操作策略可能对废水处理厂(WWTP)中全厂磷(P)转化产生的影响。需要开发一套新的生物(活性污泥,厌氧消化),物理化学(水相,沉淀,传质)过程模型和模型接口(水和污泥线之间)来描述所需的三相(气体,液体,固体)化合物的转变以及P与硫(S)和铁(Fe)循环之间的紧密联系。基准仿真模型2(BSM2)(开环)的修改版本用作测试平台,在该平台上评估了三种不同的操作替代方案(A1,A2,A3)。还包括严格的传感器和执行器模型,以重现现实的控制动作。基于模型的分析表明,铵(Smix)和总悬浮固体(XTSS)控制策略(A1)的组合可更好地使系统适应进水动力学,并通过磷累积生物(X-pAo)改善磷酸盐(Spa)的累积(41%),提高硝化/反硝化效率(18%)和降低曝气能量(E-曝气)(21%)。添加铁(X-Fecl3)进行化学除磷(A2)可促进形成三氧化二铁(XHFO-H,XHFO-L),磷酸盐吸附(XHFO-H,XHFO-L),共沉淀(XHFO- H,XHFO-L),从而降低了废水中的P含量(从2.8降至0.9 g Pm 3)。这也对污泥线产生了影响,由于硫化铁(Xpes)的沉淀,硫化氢产量(Gihs)减少了(36%)。结果,沼气产生的能量也有所增加。最后,包含用于磷回收的汽提和结晶装置(A3)减少了厌氧消化池上清液返回水线后的磷含量,并使潜在的鸟粪石(XMgNH4PO4)回收范围从69到227 kg.day-1。开启:(1)气流(Qstripping); (2)镁(IP。)的添加。使用适当的性能指标从环境和经济的角度评估所有提议的替代方法;最后,提出的方法在处理(全厂范围)废水时存在一些不足和机会讨论了治疗建模/工程项目(C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号