...
首页> 外文期刊>Water Research >Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants
【24h】

Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants

机译:查明控制污水处理厂AOB与NOB活性比的废水和工艺参数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 degrees C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (Theta(AOB) = 1.10, Theta(NOB) = 1.06-1.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal. (C) 2017 Elsevier Ltd. All rights reserved.
机译:尽管硝化/反硝化是一种从污水中去除氮的强大技术,但经济诱因仍会通过捷径的氮去除工艺来推动其未来的替代。后者需要氨氧化细菌与亚硝酸盐氧化细菌的高潜在活性比(rAOB / rNOB)。这项研究的目的是确定实际上可以控制哪些废水和工艺参数。根据它们的rAOB / rNOB倒数(在20摄氏度时)选择了两个污水处理厂(STP):Blue Plains(BP,华盛顿特区,美国)为0.6,Nieuwveer(NV,Breda,NL)为1.6。 AOB或NOB相对丰度与各自活动之间的不成比例和不相似的关系指出了群落和生长/活动限制参数的差异。 AOB社区表现出特别不同。温度对硝化器的活性没有歧视作用,具有类似的阿累尼乌斯温度依赖性(Theta(AOB)= 1.10,Theta(NOB)= 1.06-1.07)。为了使温度效应与潜在限制(如无机碳,磷和氮)脱钩,开发了一种基于动力学模型的附加机械方法。结果表明,BP的AOB活性受无机碳浓度的限制(而不是残留的N和P),而NOB受此限制的程度较小。对于NV,污泥比氮负荷率似乎是限制AOB和NOB活性的最普遍因素。总之,这项研究表明,自下而上的机械建模可以识别影响硝化性能的参数。 BP中无机碳的增加可能会反转其rAOB / rNOB值,从而促进其向捷径脱氮的过渡。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号