首页> 外文期刊>Water Research >Probing the intermolecular interaction mechanisms between humic acid and different substrates with implications for its adsorption and removal in water treatment
【24h】

Probing the intermolecular interaction mechanisms between humic acid and different substrates with implications for its adsorption and removal in water treatment

机译:探究腐殖酸与不同底物之间的分子间相互作用机理及其对水处理中吸附和去除的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Humic substance is a ubiquitous class of natural organic matter (NOM) in soil and aquatic ecosystems, which severely affects the terrestrial and aquatic environments as well as water-based engineering systems by adsorption on solids (e.g., soil minerals, nanoparticles, membranes) via different interaction mechanisms. Herein, the chemical force microscopy (CFM) technique was employed to quantitatively probe the intermolecular forces of humic acid (HA, a representative humic substance) interacting with self-assembled monolayers (SAMs, i.e., OH-SAMs, CH3-SAMs, NH2-SAMs and COOH-SAMs) in various aqueous environments at the nanoscale. The interaction forces measured during approach could be well fitted by the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by incorporating the hydrophobic interaction. The average adhesion energy followed the trend as: NH2-SAMs (similar to 3.11 mJ/m(2)) > CH3-SAMs ;(similar to 2.03 mJ/m(2)) > OH-SAMs (similar to 1.38 mJ/m(2)) > COOH-SAMs (similar to 0.52 mJ/m(2)) in 100 mM NaCl at pH 5.8, indicating the significant role of electrostatic attraction in contributing to the HA adhesion, followed by hydrophobic interaction and hydrogen bonding. The adhesion energy was found to be dependent on NaCl concentration, Ca2+ addition and pH. For the interaction between NH2-SAMs and HA, their electrostatic attraction at pH 5.8 turned to repulsion under alkaline condition which led to the sudden drop of adhesion energy. Such results promised the adsorption and release of HA using the recyclable magnetic Fe3O4 nanoparticles coated with (3-aminopropyl)tiethoxysilane (APTES). This work provides quantitative information on the molecular interaction mechanism underlying the adsorption of HA on solids of varying surface chemistry at the nanoscale, with useful implications for developing effective chemical additives to remove HA in water treatment and many other engineering processes. (C) 2020 Elsevier Ltd. All rights reserved.
机译:腐殖质是土壤和水生生态系统中普遍存在的一类天然有机物(NOM),它通过吸附在固体(例如土壤矿物质,纳米颗粒,膜)上而严重影响陆地和水生环境以及水基工程系统。不同的交互机制。在这里,化学力显微镜(CFM)技术被用来定量探测与自组装单分子层(SAMs,即OH-SAMs,CH3-SAMs,NH2-)相互作用的腐殖酸(HA,代表腐殖质)的分子间力。纳米级的各种水性环境中的SAM和COOH-SAM)。通过结合疏水相互作用,扩展的Derjaguin-Landau-Verwey-Overbeek(DLVO)理论可以很好地拟合进场过程中测得的相互作用力。平均粘附能遵循以下趋势:NH2-SAMs(类似于3.11 mJ / m(2))> CH3-SAMs;(类似于2.03 mJ / m(2))> OH-SAMs(类似于1.38 mJ / m (2))>在pH值为5.8的100 mM NaCl中的COOH-SAMs(类似于0.52 mJ / m(2)),表明静电吸引力在促进HA附着,疏水相互作用和氢键方面起着重要作用。发现粘附能取决于NaCl浓度,Ca 2+添加和pH。对于NH2-SAMs与HA之间的相互作用,在碱性条件下,其pH值5.8的静电吸引变成排斥力,导致粘附能突然下降。这样的结果保证了使用涂覆有(3-氨基丙基)三乙氧基硅烷(APTES)的可回收磁性Fe3O4纳米颗粒吸附和释放HA。这项工作提供了有关在纳米尺度上不同表面化学的固体上HA吸附的分子相互作用机理的定量信息,对开发有效的化学添加剂以去除水处理和许多其他工程过程中的HA产生了有益的启示。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2020年第1期|115766.1-115766.10|共10页
  • 作者

  • 作者单位

    McGill Univ Dept Food Sci & Agr Chem Ste Anne De Bellevue PQ H9X 3V9 Canada|Univ Alberta Dept Chem & Mat Engn Edmonton AB T6G 1H9 Canada;

    Univ Alberta Dept Chem & Mat Engn Edmonton AB T6G 1H9 Canada;

    Univ Alberta Dept Chem & Mat Engn Edmonton AB T6G 1H9 Canada|Shenzhen Technol Univ Coll Hlth Sci & Environm Engn Shenzhen 518118 Peoples R China;

    Shenzhen Technol Univ Coll Hlth Sci & Environm Engn Shenzhen 518118 Peoples R China;

    Univ Calgary Dept Chem & Petr Engn Calgary AB T2N 1N4 Canada;

    McGill Univ Dept Food Sci & Agr Chem Ste Anne De Bellevue PQ H9X 3V9 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Humic acid (HA); Natural organic matter (NOM); Chemical force microscopy (CFM); DLVO theory; Adhesion energy; Magnetic APTES/Fe3O4 nanoparticles;

    机译:腐殖酸(HA);天然有机物(NOM);化学力显微镜(CFM);DLVO理论;附着力;磁性APTES / Fe3O4纳米颗粒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号