...
首页> 外文期刊>Waste and biomass valorization >Parametric Optimization of Biohydrogen Production from Potato Waste and Scale-Up Study Using Immobilized Anaerobic Mixed Sludge
【24h】

Parametric Optimization of Biohydrogen Production from Potato Waste and Scale-Up Study Using Immobilized Anaerobic Mixed Sludge

机译:马铃薯废料生产生物氢的参数优化和固定化厌氧混合污泥的放大研究

获取原文
获取原文并翻译 | 示例
           

摘要

Response surface methodology (RSM) using the central composite design (CCD) approach was used in the parametric optimization of biohydrogen production from potato waste and the scale-up study was investigated using immobilized anaerobic mixed sludge. A two-level-four-factor (2(4))-CCD obtained via a statistical software (STATISTICA 8 release 7) was used to generate 26 fermentation experiments. The experimental results were used to generate a second-order polynomial regression equation relating the biohydrogen production to the parameters considered (potato waste concentration, pH, temperature, and fermentation time). The optimum conditions for biohydrogen production were 39.56g/L, 7.86, 37.87 degrees C and 82.58h for potato waste concentration, pH, temperature, and fermentation time, respectively with a corresponding biohydrogen yield of 68.54mL H-2/g total volatile solids (TVS). A coefficient of determination (R-2) of 0.99 was obtained by solving the polynomial regression equation. The obtained optimized conditions were further validated experimentally resulting in biohydrogen yield of 79.43mL H-2/g TVS, indicating a 15.9% biohydrogen increase. Scale-up conducted at the validated optimized conditions with the immobilized bacteria generated 298.11mL H-2/g TVS with maximum fraction of 56.38%. Therefore, these results demonstrate the potential of up-scaling biohydrogen production using immobilized bacteria which could be instrumental towards its large-scale production.
机译:使用中央复合设计(CCD)方法的响应面方法(RSM)用于从马铃薯废物中生产生物氢的参数优化,并使用固定的厌氧混合污泥研究了放大研究。通过统计软件(STATISTICA 8版本7)获得的两级四因子(2(4))-CCD用于生成26个发酵实验。实验结果用于生成二阶多项式回归方程,将生物氢的产生与所考虑的参数(马铃薯废物浓度,pH,温度和发酵时间)相关联。马铃薯废物浓度,pH,温度和发酵时间的最佳生物制氢条件分别为39.56g / L,7.86、37.87℃和82.58h,相应的生物制氢量为68.54mL H-2 / g总挥发性固体(TVS)。通过求解多项式回归方程,得出确定系数(R-2)为0.99。通过实验进一步验证了获得的优化条件,得到的生物氢产量为79.43mL H-2 / g TVS,表明生物氢增加了15.9%。在经过验证的优化条件下,利用固定化细菌进行放大生产,可生成298.11mL H-2 / g TVS,最大分数为56.38%。因此,这些结果表明使用固定化细菌扩大规模生产生物氢的潜力,这可能有助于其大规模生产。

著录项

  • 来源
    《Waste and biomass valorization》 |2019年第5期|1177-1189|共13页
  • 作者单位

    Univ Witwatersrand, Fac Engn & Built Environm, Sch Chem & Met Engn, Sustainable Energy & Environm Res Unit, Private Bag 3, ZA-2050 Johannesburg, South Africa;

    Univ Witwatersrand, Fac Engn & Built Environm, Sch Chem & Met Engn, Sustainable Energy & Environm Res Unit, Private Bag 3, ZA-2050 Johannesburg, South Africa|Covenant Univ, Coll Engn, Dept Chem Engn, Km 10 Idiroko Rd, Ota, Nigeria;

    Univ Witwatersrand, Fac Engn & Built Environm, Sch Chem & Met Engn, Sustainable Energy & Environm Res Unit, Private Bag 3, ZA-2050 Johannesburg, South Africa;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dark fermentation; Biohydrogen; Optimization; Immobilization; Potato waste;

    机译:暗发酵;生物氢;优化;固定化;马铃薯废物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号