首页> 外文期刊>Tunnelling and underground space technology >Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel
【24h】

Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel

机译:深埋圆形隧道爆破开挖过程中的动应力调整与岩石破坏

获取原文
获取原文并翻译 | 示例
           

摘要

Blasting excavation of deep-buried tunnels is a typical dynamic process subjected to the combined effects of in situ stress redistribution and blast loading. However, many theoretical and numerical studies associated with excavation-induced rock damage tend to focus on the fmal static stress distribution after excavation. Whereas the instantaneous stress change during the excavation receives much less attention. In this study, a theoretical model for a two-dimensional (2D) circular excavation is developed to investigate the stress evolution and resultant rock damage arising from millisecond-delay blasting. The results show that the rapid stress release occurring on blast created excavation boundaries generates additional stress fluctuations, giving rise to higher deviatoric stress and creating a wider compression-shear damage zone than the final static stress. The magnitude of the additional stress depends on the in-situ stress level, unloading rate, excavation dimension and rock properties. Under high in-situ stress levels (e.g., greater than 30 MPa), when smooth blasting techniques are used, the dynamic stress redistribution is mainly responsible for the formation of rock damage surrounding the tunnel contour. While in this case, blast-produced stress fluctuations from the outermost sloping holes still have a considerable contribution to the damage growth and aggravation. If aggressive blasting methods are employed in the final contour holes or at lower stress levels, explosion-induced stress waves will contribute more and even become the main cause of the surrounding rock damage. Under this scenario, blast-created tensile failure will persist into the vicinity of the tunnel profile in addition to a wider range of compression-shear damage. It is also found that the preceding blast loading and subsequent in-situ stress unloading cause directions of the maximum and minimum principal stresses to be switched during the process of stress adjustment.
机译:深埋隧道的爆破开挖是典型的动力过程,受到现场应力再分配和爆破荷载共同作用。然而,许多与开挖引起的岩石破坏相关的理论和数值研究倾向于集中在开挖后的最终静应力分布上。而开挖过程中的瞬时应力变化受到的关注要少得多。在这项研究中,建立了二维(2D)圆形开挖的理论模型,以研究由毫秒延迟爆破引起的应力演化和岩石破坏。结果表明,在爆炸产生的开挖边界上发生的快速应力释放会产生额外的应力波动,从而产生更高的偏应力,并产生比最终静应力更大的压缩剪切破坏区。附加应力的大小取决于地应力水平,卸载速率,开挖尺寸和岩石特性。在高现场应力水平(例如大于30 MPa)下,使用光滑爆破技术时,动应力的重新分布主要是造成隧道轮廓周围岩石破坏的原因。在这种情况下,由最外侧的倾斜孔产生的爆炸产生的应力波动仍对损伤的增长和加剧有很大的贡献。如果在最终的轮廓孔中或在较低的应力水平下采用积极的爆破方法,则爆炸引起的应力波将起到更大的作用,甚至成为围岩破坏的主要原因。在这种情况下,爆炸产生的拉伸破坏将持续到隧道轮廓附近,此外还有更大范围的压缩剪切破坏。还发现,在压力调节过程中,先前的爆炸载荷和随后的原地应力卸载导致最大主应力和最小主应力的方向转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号