首页> 外文期刊>Transportation research >Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions
【24h】

Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions

机译:用于选择分析的深度神经网络:具有替代特定效用函数的体系结构设计

获取原文
获取原文并翻译 | 示例
       

摘要

Whereas deep neural network (DNN) is increasingly applied to choice analysis, it is challenging to reconcile domain-specific behavioral knowledge with generic-purpose DNN, to improve DNN's interpretability and predictive power, and to identify effective regularization methods for specific tasks. To address these challenges, this study demonstrates the use of behavioral knowledge for designing a particular DNN architecture with alternative-specific utility functions (ASU-DNN) and thereby improving both the predictive power and interpretability. Unlike a fully connected DNN (F-DNN), which computes the utility value of an alternative k by using the attributes of all the alternatives, ASU-DNN computes it by using only k's own attributes. Theoretically, ASU-DNN can substantially reduce the estimation error of F-DNN because of its lighter architecture and sparser connectivity, although the constraint of alternative-specific utility can cause ASU-DNN to exhibit a larger approximation error. Empirically, ASU-DNN has 2-3% higher prediction accuracy than F-DNN over the whole hyperparameter space in a private dataset collected in Singapore and a public dataset available in the R mlogit package. The alternative-specific connectivity is associated with the independence of irrelevant alternative (IIA) constraint, which as a domainknowledge-based regularization method is more effective than the most popular generic-purpose explicit and implicit regularization methods and architectural hyperparameters. ASU-DNN provides a more regular substitution pattern of travel mode choices than F-DNN does, rendering ASU-DNN more interpretable. The comparison between ASU-DNN and F-DNN also aids in testing behavioral knowledge. Our results reveal that individuals are more likely to compute utility by using an alternative's own attributes, supporting the long-standing practice in choice modeling. Overall, this study demonstrates that behavioral knowledge can guide the architecture design of DNN, function as an effective domain-knowledge-based regularization method, and improve both the interpretability and predictive power of DNN in choice analysis. Future studies can explore the generalizability of ASU-DNN and other possibilities of using utility theory to design DNN architectures.
机译:尽管深度神经网络(DNN)越来越多地应用于选择分析,但要使领域特定的行为知识与通用DNN协调一致,提高DNN的可解释性和预测能力,以及为特定任务确定有效的正则化方法,仍然是一项挑战。为了解决这些挑战,本研究演示了如何使用行为知识来设计具有替代特定用途功能(ASU-DNN)的特定DNN体系结构,从而提高预测能力和可解释性。与完全连接的DNN(F-DNN)通过使用所有替代方案的属性来计算替代方案k的效用值不同,ASU-DNN仅通过使用k自己的属性来对其进行计算。从理论上讲,尽管替代特定实用程序的约束可能导致ASU-DNN表现出较大的逼近误差,但ASU-DNN的体系结构较轻且连接性较稀疏,因此可以大大降低F-DNN的估算误差。根据经验,在新加坡收集的私有数据集和R mlogit软件包中可用的公共数据集的整个超参数空间中,ASU-DNN的预测精度比F-DNN高2-3%。特定于选择的连通性与无关选择(IIA)约束的独立性相关,后者作为基于域知识的正则化方法比最流行的通用目的显式和隐式正则化方法以及体系结构超参数更有效。与F-DNN相比,ASU-DNN提供了更常规的出行方式选择模式,使ASU-DNN更具可解释性。 ASU-DNN和F-DNN之间的比较还有助于测试行为知识。我们的结果表明,个人更有可能通过使用替代方案自身的属性来计算效用,从而支持选择模型中的长期实践。总体而言,这项研究表明,行为知识可以指导DNN的体系结构设计,充当基于域知识的有效正则化方法,并提高DNN在选择分析中的可解释性和预测能力。未来的研究可以探索ASU-DNN的通用性以及使用效用理论设计DNN架构的其他可能性。

著录项

  • 来源
    《Transportation research》 |2020年第3期|234-251|共18页
  • 作者

  • 作者单位

    MIT Dept Urban Studies & Planning Cambridge MA 02139 USA;

    MIT Dept Civil & Environm Engn Cambridge MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep neural network; Alternative-specific utility; Choice analysis;

    机译:深度神经网络特定于替代品的实用程序;选择分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号