首页> 外文期刊>Transportation Research >Using GPS-data to determine optimum electric vehicle ranges: A Michigan case study
【24h】

Using GPS-data to determine optimum electric vehicle ranges: A Michigan case study

机译:使用GPS数据确定最佳电动汽车行驶里程:密歇根州案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Fuel-switching personal transportation from gasoline to electricity offers many advantages, including lower noise, zero local air pollution, and petroleum-independence. But alleviations of greenhouse gas (GHG) emissions are more nuanced, due to many factors, including the car's battery range. We use GPS-based trip data to determine use type-specific, GHG-optimized ranges. The dataset comprises 412 cars and 384,869 individual trips in Ann Arbor, Michigan, USA. We use previously developed algorithms to determine driver types, such as using the car to commute or not. Calibrating an existing life cycle GHG model to a forecast, low-carbon grid for Ann Arbor, we find that the optimum range varies not only with the drive train architecture (plugin-hybrid versus battery-only) and charging technology (fast versus slow) but also with the driver type. Across the 108 scenarios we investigated, the range that yields lowest GHG varies from 65 km (55 + year old drivers, ultrafast charging, plugin-hybrid) to 158 km (16-34 year old drivers, overnight charging, battery-only). The optimum GHG reduction that electric cars offer - here conservatively measured versus gasoline-only hybrid cars - is fairly stable, between 29% (16-34 year old drivers, overnight charging, battery-only) and 46% (commuters, ultrafast charging, plugin-hybrid). The electrification of total distances is between 66% and 86%. However, if cars do not have the optimum range, these metrics drop substantially. We conclude that matching the range to drivers' typical trip distances, charging technology, and drivetrain is a crucial pre-requisite for electric vehicles to achieve their highest potential to reduce GHG emissions in personal transportation.
机译:将燃料从汽油转换为电力的个人运输具有许多优势,包括更低的噪音,零的本地空气污染和石油独立性。但是,由于许多因素,包括汽车的电池续航时间,减少温室气体(GHG)排放的影响更加细微。我们使用基于GPS的旅行数据来确定使用类型特定的,GHG优化的范围。该数据集包括美国密歇根州安阿伯的412辆汽车和384,869次个人旅行。我们使用先前开发的算法来确定驾驶员类型,例如使用汽车上下班。将现有的生命周期温室气体模型校准为Ann Arbor的预测低碳网格后,我们发现最佳范围不仅随动力传动系统架构(插电式混合动力对纯电池)和充电技术(快速与慢速)而变化而且还有驱动程序类型。在我们调查的108个场景中,产生最低温室气体的范围从65公里(55岁以上的驾驶员,超快充电,插电式混合动力)到158公里(16-34岁的驾驶员,通宵充电,仅电池)。电动汽车可提供的最佳温室气体减排量(相对于纯汽油混合动力汽车保守估计)相当稳定,介于29%(16-34岁的驾驶员,通宵充电,仅使用电池)和46%(通勤者,超快充电,插件混合)。总距离的电气化率为66%至86%。但是,如果汽车的最佳行驶距离不足,则这些指标会大大下降。我们得出的结论是,将范围与驾驶员的典型出行距离,充电技术和传动系统相匹配是电动汽车发挥最大潜力以减少个人运输中的温室气体排放的关键先决条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号