首页> 外文期刊>Transport in Porous Media >A Fractal Permeability Model for Gas Transport in the Dual-Porosity Media of the Coalbed Methane Reservoir
【24h】

A Fractal Permeability Model for Gas Transport in the Dual-Porosity Media of the Coalbed Methane Reservoir

机译:煤层气储层双孔隙介质中的气体输送分形磁导率模型

获取原文
获取原文并翻译 | 示例
           

摘要

In the process of coalbed methane (CBM) exploitation, permeability is a key controlling parameter for gas transport in the CBM reservoirs. The CBM reservoir contains a large number of micropores and microfractures with complex structures. In order to accurately predict the gas permeability of the micropores and microfractures in CBM reservoirs, a fractal permeability model was developed in this work. This model considers the comprehensive effects of real gas, stress dependence, multiple gas flow mechanisms (e.g., slip flow, Knudsen diffusion and surface diffusion) and fractal characteristics (e.g., pore size distribution and flow path tortuosity) of micropores and microfractures on the gas permeability. Then, this fractal permeability model was verified by the reliable experimental data and other theoretical models. Finally, the sensitivity analysis is conducted to identify key factors to the permeability of CBM reservoir. The results showed that the fractal characteristics of the micropores and microfractures have significant effects on the permeability of CBM reservoir. Higher fractal dimension of micropores diameter and microfractures aperture represents the larger number of micropores and microfractures, resulting in a higher permeability. Higher tortuosity fractal dimension of micropores and microfractures means higher gas flow resistance, leading to the lower permeability. The multiple gas transport mechanisms coexist in micropores and microfractures of CBM reservoir. The permeability of slip flow and Knudsen diffusion both increases with the decrease in pore pressure. Surface diffusion is an important gas transport mechanisms in micropores, but it can be ignored in the microfractures. Knudsen diffusion plays a more obvious role in the lower pore pressure, which controls the gas transport in microfractures. And microfractures are beneficial to improve gas transport capacity of coalbed methane reservoir.
机译:在煤层气(CBM)开采过程中,渗透性是CBM储层中的气体运输的关键控制参数。 CBM贮存器含有大量微孔和具有复杂结构的微磨术。为了准确地预测CBM储存器中微孔和微磨术的透气性,在这项工作中开发了分形渗透性模型。该模型考虑了实际气体,应力依赖性,多种气体流动机制(例如,滑动流动,滚子扩散和表面扩散)和分形特征(例如,孔径分布和流动路径浆化)的综合效果和气体上的微磨损渗透性。然后,通过可靠的实验数据和其他理论模型来验证这种分形渗透性模型。最后,进行了敏感性分析,以确定CBM储层渗透性的关键因素。结果表明,微孔和微磨术的分形特征对CBM储层的渗透性有显着影响。微孔直径和微磨术孔的较高分形尺寸表示较大数量的微孔和微磨术,导致较高的渗透性。微孔和微磨术的较高曲折分形尺寸是指较高的气体流动性,导致渗透性较低。多种气体传输机制在CBM储存器微孔中共存和微磨削。滑动流动和knudsen扩散的渗透性随着孔隙压力的降​​低而增加。表面扩散是微孔中的重要气体传输机制,但在微磨术中可以忽略它。 Knudsen扩散在较低的孔隙压力中起着更明显的作用,可控制微磨损中的气体输送。和微型裂缝有利于提高煤层气储层的气体运输能力。

著录项

  • 来源
    《Transport in Porous Media》 |2021年第2期|511-534|共24页
  • 作者单位

    Henan Polytech Univ Sch Safety Sci & Engn Jiaozuo 454003 Henan Peoples R China;

    Henan Polytech Univ Sch Safety Sci & Engn Jiaozuo 454003 Henan Peoples R China|Henan Polytech Univ State Key Lab Cultivat Base Gas Geol & Gas Contro Jiaozuo 454003 Henan Peoples R China|State Collaborat Innovat Ctr Coal Work Safety & C Jiaozuo 454003 Henan Peoples R China;

    Henan Polytech Univ Sch Safety Sci & Engn Jiaozuo 454003 Henan Peoples R China;

    Henan Polytech Univ Sch Safety Sci & Engn Jiaozuo 454003 Henan Peoples R China;

    Henan Polytech Univ Sch Safety Sci & Engn Jiaozuo 454003 Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coalbed methane reservoir; Fractal dimension; Permeability model; Effective stress; Dual-porosity media;

    机译:煤层气储层;分形尺寸;渗透模型;有效应力;双孔隙率介质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号