...
首页> 外文期刊>Transport in Porous Media >Mixing and Mass Transfer in Multicontact Miscible Displacements
【24h】

Mixing and Mass Transfer in Multicontact Miscible Displacements

机译:多接触混溶位移中的混合和传质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, we investigate the accuracy of some physical models that are frequently used to describe and interpret dispersive mixing and mass transfer in compositional reservoir simulation. We have designed a quaternary analog fluid system (alcohol-water-hydrocarbon) that mimics the phase behavior of CO_2-hydrocarbon mixtures at high pressure and temperature. A porous medium was designed using PolyTetraFlouroEthylene (PTFE) materials to ensure that the analog oil acts as the wetting phase, and the properties of the porous medium were characterized in terms of porosity, permeability and dispersivity. Relative permeability and interfacial tension (IFT) measurements were also performed to delineate interactions between the fluid system and the porous medium. The effluent concentrations from two-component first-contact miscible (FCM) displacement experiments exhibit a tailing behavior that is attributed to imperfect sweep of the porous medium: A feature that is not captured by normal dispersion models. To represent this behavior in displacement calculations, we use dual-porosity (DP) models including mass transfer between flowing and stagnant porosities. Two 4-component two-phase displacement experiments were performed at near-miscible and multicontact miscible (MCM) conditions and the effluent concentrations were interpreted by numerical calculations. We demonstrate that the accuracy of our displacement calculations relative to the experimental observations is sensitive to the selected models for dispersive mixing, mass transfer between flowing and stagnant porosities, and IFT scaling of relative permeability functions. We also demonstrate that numerical calculations substan-tially agree with the experimental observations for some physical models with limited need for model parameter adjustment. The combined experimental and modeling effort presented in this work identifies and explores the impact of a set of physical mechanisms (dispersion and mass transfer) that must be upscaled adequately for field-scale displacement calculations in DP systems.
机译:在这项工作中,我们调查了一些物理模型的准确性,这些物理模型经常用于描述和解释成分混合油藏模拟中的分散混合和传质。我们设计了一种四元模拟流体系统(酒精-水-烃),该系统模拟了高压和高温下CO_2-烃混合物的相行为。使用聚四氟乙烯(PTFE)材料设计了多孔介质,以确保模拟油充当润湿相,并根据孔隙率,渗透率和分散性表征了多孔介质的特性。还进行了相对渗透率和界面张力(IFT)测量,以描述流体系统和多孔介质之间的相互作用。两组分第一接触混溶(FCM)置换实验的流出物浓度显示出拖尾行为,这归因于多孔介质的不完全吹扫:这是常规分散模型无法捕获的特征。为了表示位移计算中的这种行为,我们使用了双孔隙度(DP)模型,包括流动孔隙和静止孔隙之间的传质。在近混溶和多接触混溶(MCM)条件下进行了两个4组分两相驱替实验,并通过数值计算解释了废水浓度。我们证明,相对于实验观测值,我们的位移计算的准确性对所选模型的分散混合,流动和停滞孔隙之间的传质以及相对渗透率函数的IFT缩放敏感。我们还证明,对于某些物理模型,数值计算基本上与实验观察结果吻合,而模型参数调整的需求有限。这项工作中结合的实验和建模工作确定并探索了一组物理机制(分散和传质)的影响,必须对这些物理机制进行适当的升级,才能在DP系统中进行现场规模的位移计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号