...
首页> 外文期刊>Transport in Porous Media >Numerical Algorithms for Network Modeling of Yield Stress and other Non-Newtonian Fluids in Porous Media
【24h】

Numerical Algorithms for Network Modeling of Yield Stress and other Non-Newtonian Fluids in Porous Media

机译:多孔介质中屈服应力和其他非牛顿流体网络建模的数值算法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many applications involve the flow of non-Newtonian fluids in porous, subsurface media including polymer flooding in enhanced oil recovery, proppant suspension in hydraulic fracturing, and the recovery of heavy oils. Network modeling of these flows has become the popular pore-scale approach for understanding first-principles flow behavior, but strong nonlinearities have prevented larger-scale modeling and more time-dependent simulations. We investigate numerical approaches to solving these nonlinear problems and show that the method of fixed-point iteration may diverge for shear-thinning fluids unless sufficient relaxation is used. It is also found that the optimal relaxation factor is exactly equal to the shear-thinning index for power-law fluids. When the optimal relaxation factor is employed it slightly outperforms Newton's method for power-law fluids. Newton-Raphson is a more efficient choice (than the commonly used fixed-point iteration) for solving the systems of equations associated with a yield stress. It is shown that iterative improvement of the guess values can improve convergence and speed of the solution. We also develop a new Newton algorithm (Variable Jacobian Method) for yield-stress flow which is orders of magnitude faster than either fixed-point iteration or the traditional Newton's method. Recent publications have suggested that minimum-path search algorithms for determining the threshold pressure gradient (e.g., invasion percolation with memory) greatly underestimate the true threshold gradient when compared to numerical solution of the flow equations. We compare the two approaches and reach the conclusion that this is incorrect; the threshold gradient obtained numerically is exactly the same as that found through a search of the minimum path of throat mobilization pressure drops. This fact can be proven mathematically; mass conservation is only preserved if the true threshold gradient is equal to that found by search algorithms.
机译:许多应用涉及非牛顿流体在多孔地下介质中的流动,包括提高油采收率的聚合物驱,水力压裂中支撑剂的悬浮以及重油的采收。这些流的网络建模已成为了解第一性流行为的流行的孔尺度方法,但是强大的非线性因素阻止了大规模的建模和更多的时间依赖性仿真。我们研究了解决这些非线性问题的数值方法,并表明,除非使用足够的松弛,否则定点迭代的方法可能对剪切稀化流体发散。还发现最佳松弛因子恰好等于幂律流体的剪切稀化指数。当采用最佳松弛因子时,它在性能定律上略优于牛顿法。 Newton-Raphson是解决与屈服应力相关的方程组的更有效的选择(比通常使用的定点迭代法更有效)。结果表明,猜测值的迭代改进可以提高解的收敛性和速度。我们还针对屈服应力流开发了一种新的牛顿算法(可变雅可比方法),该算法比定点迭代或传统牛顿方法要快几个数量级。最近的出版物已经提出,与流动方程的数值解相比,用于确定阈值压力梯度(例如,侵入渗透与记忆)的最小路径搜索算法大大低估了真实的阈值梯度。我们比较了两种方法,得出结论是不正确的。从数值上获得的阈值梯度与通过搜索喉咙动员压降的最小路径发现的阈值梯度完全相同。这个事实可以用数学证明。仅当真实阈值梯度等于搜索算法发现的阈值梯度时,质量保留才会保留。

著录项

  • 来源
    《Transport in Porous Media》 |2012年第3期|p.363-379|共17页
  • 作者单位

    Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 1 University Station, C0300, Austin, 78712-0300 TX, USA;

    Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 1 University Station, C0300, Austin, 78712-0300 TX, USA;

    Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 1 University Station, C0300, Austin, 78712-0300 TX, USA;

    Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 1 University Station, C0300, Austin, 78712-0300 TX, USA;

    Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, 1 University Station, C0300, Austin, 78712-0300 TX, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    pore-scale modeling; non-newtonian flow; yield stress; invasion percolation with memory; threshold path;

    机译:孔尺度模型非牛顿流屈服应力入侵渗透与记忆;阈值路径;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号