...
首页> 外文期刊>Transport in Porous Media >Effects of Medium Permeability Anisotropy on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media
【24h】

Effects of Medium Permeability Anisotropy on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media

机译:介质渗透率各向异性对流体饱和多孔介质中化学溶解前沿的不稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper deals with the theoretical aspects of chemical-dissolution front instability problems in two-dimensional fluid-saturated porous media including medium anisotropic effects. Since a general anisotropic medium can be described as an orthotropic medium in the corresponding principal directions, a two-dimensional orthotropic porous medium is considered to derive the analytical solution for the critical condition, which is used to judge whether or not the chemical dissolution front can become unstable during its propagation. In the case of the mineral dissolution ratio (that is defined as the ratio of the dissolved-mineral equilibrium concentration in the pore-fluid to the molar concentration of the dissolvable mineral in the solid matrix of the fluid-saturated porous medium) approaching zero, the corresponding critical condition has been mathematically derived when medium permeability anisotropic effects are considered. As a complementary tool, the computational simulation method is used to simulate the morphological evolution of chemical dissolution fronts in two-dimensional fluid-saturated porous media including medium anisotropic effects. The related theoretical and numerical results demonstrated that: (1) a decrease in the medium anisotropic permeability factor (or ratio), which is defined as the ratio of the principal permeability in the transversal direction to that in the longitudinal direction parallel to the pore-fluid inflow direction, can stabilize the chemical dissolution front so that it becomes more difficult for a planar chemical-dissolution front to evolve into different morphologies in the chemical dissolution system; (2) the medium anisotropic permeability ratio can have significant effects on the morphological evolution of the chemical dissolution front. When the Zhao number of the chemical dissolution system is greater than its critical value, the greater the medium anisotropic permeability ratio, the faster the irregular chemical-dissolution front grows.
机译:本文探讨了二维流体饱和多孔介质中包括介质各向异性效应的化学溶解前沿不稳定性问题的理论方面。由于可以将一般的各向异性介质描述为相应主方向上的正交各向异性介质,因此,可以考虑使用二维正交各向异性多孔介质来导出临界条件的解析解,用于判断化学溶解前沿是否可以在传播过程中变得不稳定。在矿物溶解比(定义为孔隙流体中溶解的矿物平衡浓度与流体饱和的多孔介质的固体基质中的可溶性矿物的摩尔浓度的比)接近零的情况下,当考虑中等渗透率各向异性效应时,通过数学推导了相应的临界条件。作为一种补充工具,计算模拟方法用于模拟二维介质饱和多孔介质中化学溶蚀锋面的形态演化,包括介质各向异性效应。相关的理论和数值结果表明:(1)介质各向异性渗透率(或比率)的减小,定义为横向上的主渗透率与平行于孔隙的纵向上的主渗透率之比。流体的流入方向可以稳定化学溶解前沿,从而使得平面化学溶解前沿在化学溶解系统中演化为不同形态变得更加困难; (2)介质各向异性渗透率对化学溶蚀锋面的形态演化有重要影响。当化学溶解系统的Zhao数大于其临界值时,介质各向异性渗透率越大,不规则化学溶解前沿的增长越快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号