首页> 外文期刊>Transactions of the ASABE >Adaptation and Validation of a Dynamic Plant Surface Microclimate Model (PSCLIMATE) for Greenhouse Tomatoes
【24h】

Adaptation and Validation of a Dynamic Plant Surface Microclimate Model (PSCLIMATE) for Greenhouse Tomatoes

机译:温室番茄动态植物表面微气候模型(PSCLIMATE)的适应与验证

获取原文
获取原文并翻译 | 示例
           

摘要

The microclimate within a canopy and at the plant surface has a significant influence on the physiological processes of plants and the epidemiology of pathogens. However, it is usually not measured in routine greenhouse climate monitoring and control. We have developed a plant surface climate model for greenhouse cucumbers (PSCLIMATE-CUCUMBER) to predict the vertical microclimate profile within crop canopy, based on principle s of energy balance and heat and mass transfer theory in a previous study. This study further adapted the dynamic model to greenhouse tomatoes (PSCLIMATE-TOMATO), the most important greenhouse vegetable crop. Physiological and architectural functions and parameters of tomato plants were developed and incorporated into the model. The PSCLIMATE-TOMATO model was then validated with microclimate data collected in a greenhouse tomato experiment from November 2002 to February 2003. The wind speed profiles within the canopy, heating system configurations, and greenhouse structural parameters determined experimentally or derived from the literature were used as simulation parameters. The calculated model efficiencies (EF) were 0.87, 0.86, and 0.47 for predicting air temperature, relative humidity, and global solar radiation, respectively, and the corresponding average prediction accuracies were 97.7%, 94.7%, and 64.46%, respectively. The model accurately predicted microclimate variables within the canopy and at the leaf surface except at solar noon when solar radiation was high. At noon hours on sunny days, the model had some overestimation of solar radiation and air temperature, and underestimation of relative humidity. Further modification of the model by incorporating the effects of light distribution (both direct and diffuse), leaf temperature, and CO 2 concentration on leaf stomatal conductance and more accurate measurement of solar radiation with line sensors may improve the microclimate prediction at noon hours on sunny days.
机译:冠层内部和植物表面的小气候对植物的生理过程和病原体的流行病学有重大影响。但是,通常在常规温室气候监测和控制中无法测量。我们已经根据以前的研究中的能量平衡原理和传热传质理论,开发了温室黄瓜的植物表面气候模型(PSCLIMATE-CUCUMBER),以预测作物冠层内的垂直微气候分布。这项研究进一步将动态模型应用于最重要的温室蔬菜作物温室番茄(PSCLIMATE-TOMATO)。开发了番茄植物的生理和建筑功能及参数,并将其纳入模型。然后使用2002年11月至2003年2月在温室番茄试验中收集的微气候数据验证了PSCLIMATE-TOMATO模型。将冠层内的风速分布,加热系统配置以及通过实验确定或从文献中得出的温室结构参数用作下标。模拟参数。预测的气温,相对湿度和太阳总辐射的模型效率(EF)分别为0.87、0.86和0.47,相应的平均预测准确度分别为97.7%,94.7%和64.46%。该模型可以准确预测冠层内部和叶片表面的微气候变量,但太阳辐射较高时,除太阳正午外。在晴天的中午时分,该模型高估了太阳辐射和气温,而低估了相对湿度。通过合并光分布(直接和漫反射),叶片温度和CO 2浓度对叶片气孔电导的影响以及使用线传感器更精确地测量太阳辐射,可以进一步修改模型,从而可以改善晴天中午时的微气候预测天。

著录项

  • 来源
    《Transactions of the ASABE》 |2008年第5期|p.1715-1725|共11页
  • 作者单位

    The authors are Xiuming Hao, Research Scientist, Yun Zhang, Research Associate, Les Shipp, Research Scientist, and Md. Saidul Borhan, ASABE Member Engineer, NSERC Visiting Fellow, Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada. Corresponding author: Xiuming Hao, Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, 2585 County Road 20, Harrow, Ontario, Canada N0R 1G0;

    phone: 519-738- 1228;

    fax: 519-738-2929;

    e-mail: haox@agr.gc.ca.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lycopersicon esculentum , Microclimate prediction, Modeling, Model efficiency, Simulation, Validation;

    机译:番茄(Lycopersicon esculentum);微气候预测;建模;模型效率;模拟;验证;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号