...
首页> 外文期刊>Transactions of JWRI >Insertion of lattice strains into ordered LiNi_(0.5)Mn_(1.5)O_4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries
【24h】

Insertion of lattice strains into ordered LiNi_(0.5)Mn_(1.5)O_4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries

机译:通过机械应力将晶格应变插入有序LiNi_(0.5)Mn_(1.5)O_4尖晶石中:完美和不完美结构作为锂离子电池阴极的比较

获取原文
获取原文并翻译 | 示例

摘要

The Ni-doped lithium manganese oxide, LiNio.5Mn1.5O4, has received much attention as a cathode material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi_(0.5)Mn_(1.5)O_4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi_(0.5)Mn_(1.5)O_4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNio.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi_(0.5)Mn_(1.5)O_4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance.
机译:作为高能锂离子电池(LIBs)的正极材料,掺Ni的锂锰氧化物LiN10·5Mn1.5O4备受关注。取决于Ni和Mn离子的有序状态,该活性材料具有两种不同的尖晶石结构。有序的LiNi_(0.5)Mn_(1.5)O_4尖晶石由于其差的电子电导率而具有比无序相差的阴极性能。然而,有序的LiNi_(0.5)Mn_(1.5)O_4尖晶石具有避免Mn离子溶解的潜在优点,这对于无序的尖晶石是一个问题。阴极性能的提高对于将来的应用很重要。在这里,我们报告了一种独特的方法来改善有序LiNio.5Mn1.5O4尖晶石的阴极性能。使用磨损型磨机的机械处理成功地将晶格应变插入到有序的LiNi_(0.5)Mn_(1.5)O_4尖晶石结构中,而没有相变成无序相。机械应力引起的晶格应变的插入提供了增加的放电容量和减小的电荷转移阻力。这种有限的晶体结构修饰改善了阴极性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号