...
首页> 外文期刊>Transactions of the American nuclear society >Design of a Flat Channel Experiment to Study Molten Salt Thermal Radiation Heat Transfer
【24h】

Design of a Flat Channel Experiment to Study Molten Salt Thermal Radiation Heat Transfer

机译:扁平通道实验的设计,以研究熔盐热辐射热传递

获取原文
获取原文并翻译 | 示例
           

摘要

Molten salts are currently being considered in various innovative nuclear reactor designs due to their unique properties. Some of these advanced reactor designs use molten salts as both a fuel carrier and coolant. In other designs, they are instead considered only as primary and/or intermediate circuits coolant. Thanks to the experimental data gathered from the Molten-salt Reactor Experiment (MSRE) at ORNL and the advances made on numerical multi-physics tools, high detailed models can now be developed to support the design and safety studies of these innovative reactors. Nevertheless, the modeling of some molten salts phenomena requires further improvements. To mention a few of them: phase change, radiative heat transfer, corrosion of reactor materials, fission products retention and thermodynamic properties. Accordingly, one of the objectives of the H2020 European project SAMOSAFER is to develop more accurate heat transfer models needed for safety studies of Molten Salt Reactors (MSRs) and their comparison against experimental data. In particular, radiative heat transfer in the molten salt used in the fuel and primary circuits is one of the aspects currently being studied in SAMOSAFER. While under most conditions, radiative heat transfer is not expected to be the main heat transfer mechanism, its effects cannot be neglected at the high temperatures found during some accidental conditions or in geometries where the fluid can be considered as optically thin (e.g. in the heat exchanger). The studies of radiative heat transfer are being carried-out in the SWATH [1] (Salt at WA11: Thermal ExcHanges) facility at the CNRS Grenoble. This facility uses a discontinuous working principle to stablish a stable flow by regulating pressure difference between two tanks as shown in Fig. 1.
机译:由于其独特的特性,目前正在考虑各种创新核反应堆设计的熔盐。这些先进的反应堆设计中的一些使用熔盐作为燃料载体和冷却剂。在其他设计中,它们仅被视为主要和/或中间电路冷却液。由于奥诺尔熔盐反应器实验(MSRE)收集的实验数据,现在可以开发出高详细的型号来支持这些创新反应堆的设计和安全研究。然而,一些熔融盐现象的建模需要进一步改善。提及其中一些:相变,辐射传热,反应器材料的腐蚀,裂变产物保留和热力学性质。因此,H2020欧洲项目Samosafer的目的之一是为熔融盐反应器(MSRS)的安全性研究及其与实验数据的比较进行更准确的传热模型。特别地,在燃料和主电路中使用的熔融盐中的辐射热传递是当前在Samosafer中研究的方面之一。虽然在大多数条件下,辐射热传递预计不会是主要的传热机制,但在一些意外条件或流体可以被认为是光学薄的几何形状的高温下,其效果不能忽略其效果(例如,在热量中交换者)。在CNR Grenbble的Swath [1](WA11处的盐:热交换)设施中,对辐射热传递的研究正在进行。该设施采用不连续的工作原理来通过调节两个罐之间的压力差来使稳定的流动稳定,如图2所示。1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号