...
首页> 外文期刊>Topology and its applications >Homology and cohomology of functional spaces
【24h】

Homology and cohomology of functional spaces

机译:功能空间的同源性和同学

获取原文
获取原文并翻译 | 示例

摘要

Let {X-alpha} be an inverse system of compact spaces X-alpha and Y be an ANR. Consider a direct system {F(X-alpha, Y)} of topological spaces F(X-alpha,Y), where F(X-alpha,Y) is the space of all continuous maps f : X-alpha - Y, given the compact-open topology. In [5], S. Mardesic proved that for the singular homology there is an isomorphismlim(-) H-*(s)(F(X-alpha,Y)) -(similar to) H-*(s)(F(X,Y)), (1)where X = lim(-) X-alpha.In the present paper we prove that for the singular cohomology there is a finite exact sequence0 - lim(-)((2n-3)) (HsF alpha)-F-1 - . . . - lim(-)((1)) H-s(n-1) F-alpha - H-s(n) F - . . .- lim(-) (HsF alpha)-F-n - lim(-)((2)) H-s(n-1) F-alpha - . . . - lim(-)((2n-2)) H-s(1) F-alpha - 0, (2)where H-s(q) F-alpha = H-s(q)(F(X-alpha, Y), G), H-s(q) F = H-s(q)(F(X, Y), G), X = lim(-) X-alpha, G is an abelian group.Let X be a compact space and S = {S-m, sigma(m)} be the spherical spectrum. Consider the functional spectrum F (X, S) = {F-m(X)}, where F-m(X) = F (X, S-m) is the space of all continuous maps f : X - S-m, given the compact-open topology. The functional spectrum F (X, S) induces the direct system {Cm-* (F-m(X))} of integral singular chains. The direct limit C* (X) = lim(- m) Cm-*(F-m(X)) is a free cochain complex, where C-q (X) = lim(- m) Cm-q(F-m(X)), q = 0. The Milnor homology (H) over bar (*) (X, G) of the compact space X over the coefficients group G is defined as the homology of the chain complex C-* (X) = Hom(C* (X), G) [8].In the present work for the compact space X and Milnor homology (H) over bar (*) we prove that there is an exact sequence0 - lim(-)((1)) H-s(m-q-1)(F-m(X), G) - (H) over bar (q)(X, G) - lim(-) H-s(m-q) (F-m(X), G) - 0and that the Milnor homology on the category A(c) of compact pairs is a homology theory in the Berikashvili sense. (C) 2019 Elsevier B.V. All rights reserved.
机译:让{X-alpha}成为Compact Spaces X-Alpha和Y的逆系统。考虑一个直接系统【f(x-alpha,y)】拓扑空间f(x-alpha,y),其中f(x-alpha,y)是所有连续地图f:x-alpha - > y的空间鉴于紧凑开放的拓扑。在[5]中,S. Mardesic证明,对于奇异同源性,存在异形症( - >)H - *(F(X-alpha,Y)) - >(类似于)H - *(S) (f(x,y)),(1)其中x = lim(< - )x-aalpha.in,本文证明,对于奇异的同学,有一个有限的精确序列0-> lim(< - )(( 2N-3))(HSF alpha)-f-1 - >。 。 。 - > LIM(< - )((1))H-S(N-1)F-α - > H-S(N)F - >。 。 .-> LIM(< - )(HSFα)-F-N - > LIM(< - )((2))H-S(N-1)F-α - >。 。 。 - > LIM(< - )((2N-2))HS(1)F-α - > 0,(2)其中HS(Q)F-alpha = HS(Q)(f(x-alpha,y) ,g),hs(q)f = hs(q)(f(x,y),g),x = lim(< - )x-alpha,g是abelian group.let x是紧凑的空间和s = {SM,Sigma(M)}是球面光谱。考虑功能频谱f(x,s)= {fm(x)},其中fm(x)= f(x,sm)是给定紧凑开放的拓扑的所有连续映射F:x - > Sm的空间。功能谱F(x,s)引起整体奇异链的直接系统{cm- *(f-m(x))。直接限制C *(X)= LIM( - > M)cm - *(FM(x))是一个游离氏族复合物,其中Cq(x)= lim( - > m)cm-q(fm(x) ),q> = 0。CompaceSigns G上的紧凑型空间X上的摩尔诺同源(H)(*)(x,g)被定义为链络合物c- *(x)= hom的同源性(c *(x),g)[8]。在本作紧凑的空间x和milnor同源(h)上方的工作(*),我们证明有一个精确的序列0 - > lim(< - )(( 1))HS(MQ-1)(FM(x),g) - >(h)上方(q)(x,g) - > lim(< - )hs(mq)(fm(x),g ) - > 0并在Compact对的A(C)类别上的MILNOR同源性是Berikashvili Sense中的同源性理论。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号