...
首页> 外文期刊>Thin-Walled Structures >Buckling of cylindrical shells under transverse shear
【24h】

Buckling of cylindrical shells under transverse shear

机译:圆柱壳在横向剪切作用下的屈曲

获取原文
获取原文并翻译 | 示例

摘要

This work concerns with experimental studies on buckling of thin-walled circular cylindrical shells under transverse shear. The buckling loads are also obtained from finite element models, empirical formulae and codes and are compared. Experiments are conducted on 12 models made of stainless steel by rolling and longitudinal seam welding. In situ initial geometric imperfection surveys are carried out. The tests are conducted with and without axial constraint at the point diametrically opposite the loading. Theoretical analyses are carried out using ABAQUS finite element code. Two finite element models considered are: (ⅰ) geometry with real imperfection (FES-Ⅰ) and (ⅱ) critical mode imperfect geometry (FES-Ⅱ). In the former, the imperfections are imposed at all nodes and in the latter, the imperfection is imposed by renormalizing the eigen mode, using the maximum measured imperfection. General nonlinear option is employed in both the cases for estimating the buckling load. Galletly and Blachut's expressions, design guidelines of Japan for LMFBR main vessel expressions (empirical formulae), ASME and aerospace structural design codes are used for comparing with experimental loads. The comparisons of experimental, numerical and analytical buckling loads reveal the following. The numerical results are always higher than the experimental values; the percentage difference depends on the wall thickness. FES-Ⅱ predicts somewhat a lower load than that of the FES-Ⅰ. The Japanese guidelines predict the lowest load, which is conservative. Experimental loads are lower than that predicted by both ASME and aerospace structural design codes.
机译:这项工作涉及在横向剪切作用下薄壁圆柱壳屈曲的实验研究。还可以从有限元模型,经验公式和代码中获得屈曲载荷,并进行比较。通过轧制和纵向缝焊对12种不锈钢制成的模型进行了实验。进行了初始的几何缺陷调查。在有和没有轴向约束的情况下,在与负载相对的位置进行测试。使用ABAQUS有限元代码进行理论分析。所考虑的两个有限元模型是:(ⅰ)带有实际缺陷的几何形状(FES-Ⅰ)和(ⅱ)临界模式不完美的几何形状(FES-Ⅱ)。在前者中,缺陷是在所有节点上施加的,而在后者中,缺陷是通过使用最大的测量缺陷来重新规范本征模来施加的。在两种情况下均采用通用非线性选项来估计屈曲载荷。 Galletly和Blachut的表达式,日本有关LMFBR主船表达式的设计准则(经验公式),ASME和航空航天结构设计规范用于与实验载荷进行比较。实验,数值和分析屈曲载荷的比较表明以下内容。数值结果总是高于实验值。百分比差异取决于壁厚。 FES-Ⅱ预测的载荷要比FES-Ⅰ更低。日本指南预测最低负载,这是保守的。实验负载低于ASME和航空航天结构设计规范所预测的负载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号