首页> 外文期刊>Thin-Walled Structures >Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing
【24h】

Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing

机译:准静态压碎下新型再参与者圆形扶持性蜂窝的多尺度表征

获取原文
获取原文并翻译 | 示例
           

摘要

Auxetic honeycombs showing negative Poisson's ratio (NPR) effects have attracted extensive attentions due to their excellent mechanical properties, among which those with the innovative re-entrant circular (REC) unit cells have proven to present higher energy absorption capabilities than their equivalents with conventional re-entrant (RE) units, under quasi-static loading. In the current study, the quasi-static crushing strengths and energy absorption capabilities of the REC honeycombs with different geometric parameters are thoroughly investigated, through finite element (FE) based numerical simulations in combination with theoretical analyses. It was found that the crushing stress, the energy absorption characteristic and the auxeticity, i.e. the NPR value of the REC honeycomb can be tailored by adjusting the geometrical parameters of its unit cell to trigger specific deformation mechanisms in both meso (unit cell) and macro (total honeycomb) scales. Specifically, based on the cell wall interaction pattern, the REC unit cell configuration map can be divided into three distinctive regions, which are the penetration region, the interference region and the regular region, respectively. LS-DYNA based numerical simulations revealed three typical macro-scale deformation modes, i.e. the "X", the "I" and the "V" modes of the REC honeycomb in the three regions, corresponding to three mesoscale interaction patterns of the unit cell, including the "overlap", the "rectangle" and the "re-entrant" patterns. The quasi-static crushing stresses of the REC honeycombs with different geometric parameters were further compared and divided into four distinctive stages: the elastic stage, the plateau stage, the enhancement stage and the densification stage, respectively. Larger radius to height ratio and length to height ratio were found to result in larger plateau strain and smaller plateau stress. Good agreements were achieved between the numerical and theoretical predictions of the plateau strain and plateau stress of the REC honeycombs. Finally, the quasi-static energy absorption capabilities and the NPR values of the REC honeycombs with different geometric parameters were revealed and discussed, to assist engineering applications of such materials.
机译:显示负泊松比率(NPR)效应的辅助蜂窝状由于其优异的机械性能而引起了广泛的关注,其中具有创新的再参与者圆形(REC)单元细胞的那些被证明具有比与传统RE的等同物更高的能量吸收能力 - 在准静态载荷下,单位(重新)单位。在目前的研究中,通过基于有限元(Fe)的数值模拟,通过与理论分析结合的数值模拟彻底研究了具有不同几何参数的rec蜂窝的准静态粉碎强度和能量吸收能力。发现粉碎应力,能量吸收特性和辅助性,即通过调节其单元电池的几何参数来触发MESO(单元电池)和宏的特定变形机制来定制REC蜂窝状的NPR值(总蜂窝)鳞片。具体地,基于细胞壁交互模式,REC单元电池配置图可以分为三个独特区域,它们分别是渗透区域,干扰区域和常规区域。基于LS-DYNA的数值模拟揭示了三种典型的宏观变形模式,即三个区域中的“X”,“X”,“I”和“v”模式,对应于单元电池的三个Mescreation相互作用模式,包括“重叠”,“矩形”和“重新参与者”模式。进一步比较了具有不同几何参数的rec蜂窝的准静态粉碎应力,并分为四个独特的阶段:弹性级,高原阶段,增强阶段和致密化阶段。发现较大的半径和高度比和高度比率的长度导致较大的平台应变和更小的高原应力。康蜂窝的高原菌株和高原应力的数值和理论预测之间实现了良好协议。最后,揭示和讨论了拟静电能量吸收能力和具有不同几何参数的REC蜂窝的NPR值,以帮助这些材料的工程应用。

著录项

  • 来源
    《Thin-Walled Structures》 |2021年第12期|108314.1-108314.14|共14页
  • 作者单位

    Dalian Univ Technol Sch Automot Engn State Key Lab Struct Anal Ind Equipment Dalian 116024 Peoples R China|Dalian Univ Technol Ningbo Inst Ningbo 315016 Peoples R China;

    Dalian Univ Technol Sch Automot Engn State Key Lab Struct Anal Ind Equipment Dalian 116024 Peoples R China;

    Dalian Univ Technol Sch Automot Engn State Key Lab Struct Anal Ind Equipment Dalian 116024 Peoples R China|Tsinghua Univ State Key Lab Automot Safety & Energy Beijing 100084 Peoples R China;

    Univ Wollongong Ctr Infrastruct Protect & Min Safety Wollongong NSW 2522 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Auxetic; Re-entrant circular honeycomb; Negative Poisson's ratio; Crushing response; Energy absorption; Multi-scale analyses;

    机译:辅助;重新参加圆形蜂窝;负泊松比例;破碎响应;能量吸收;多尺度分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号