...
首页> 外文期刊>Thin Solid Films >Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer
【24h】

Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer

机译:不同气氛退火水热晶种层的ZnO纳米棒/ p-Si异质结二极管上的载流子传输机理

获取原文
获取原文并翻译 | 示例
           

摘要

Annealing in various atmospheres (vacuum, N_2, and O_2) was employed tor a hydrothermal seed-layer. The influence on ZnO nanorods (NRs) and carrier transport of ZnO NRs/p-Si heterojunction diodes (HJDs) was investigated. In this work, a hydrothermal method was employed to prepare a seed-layer on a Si substrate, and then annealing at 450 ℃ in various atmospheres was carried out to improve the subsequent growth of ZnO NRs according to the same method. Observations indicated that ZnO NRs with an O_2-annealed seed-layer have a higher nucleation density and absorb fewer OH groups or O_2~- ions, and hence they have fewer defect-level centres. This leads to a very large rectification ratio of 1.9 × 10~5 in the ZnO NRs/p-Si HJDs because oxygen atoms compensate for the oxygen vacancy-related defects. More band-gap states are present at the ZnO/p-Si interface for the vacuum annealing sample, and this enables recombination-tunnelling transport with a rather large ideality factor of 7 at forward voltage less than 0.7 V. In contrast, diffusion-recombination transport was obtained in the N_2- and O_2-annealed samples with ideality factors as low as 2.4 and 2.2, respectively.
机译:在各种气氛(真空,N_2和O_2)中进行退火以形成水热种子层。研究了对ZnO纳米棒(NRs)和ZnO NRs / p-Si异质结二极管(HJDs)载流子传输的影响。在这项工作中,采用水热法在Si衬底上制备晶种层,然后根据相同的方法在各种气氛下于450℃进行退火,以改善ZnO NRs的后续生长。观察表明,具有O_2退火种子层的ZnO NRs具有较高的成核密度,并吸收较少的OH基团或O_2〜-离子,因此它们的缺陷能级中心更少。 ZnO NRs / p-Si HJDs的整流比非常高,为1.9×10〜5,因为氧原子补偿了与氧空位有关的缺陷。对于真空退火样品,在ZnO / p-Si界面处存在更多的带隙态,这使得在低于0.7 V的正向电压下能够以相当大的理想因子7进行重组-隧穿传输。相反,扩散-重组在N_2和O_2退火的样品中获得了迁移率,理想因子分别低至2.4和2.2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号