...
首页> 外文期刊>Thermal engineering >The High-Temperature Sodium Coolant Technology in Nuclear Power Installations for Hydrogen Power Engineering
【24h】

The High-Temperature Sodium Coolant Technology in Nuclear Power Installations for Hydrogen Power Engineering

机译:氢动力工程核电装置中的高温钠冷却剂技术

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern N PPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.
机译:在使用高温钠冷核动力装置获取氢气和其他创新应用(煤的气化和流化,石油精炼,将生物质转化为液体燃料),化学工业,冶金,食品工业,等),从反应堆三级冷却剂回路进入其二级冷却剂回路的氢源的强度要比配备BN-600的核电厂(NPP)的氢源高出两个或三个数量级。反应堆。针对这种情况,根本上提出了新的工艺解决方案。实施它们的主要先决条件是,钠冷却剂中的氢浓度比现代N PP中的氢浓度高100-1000倍,与将钠通过钒或铌制成的膜进行真空处理以除去钠中的氢相结合。使用扩散模型进行的数值研究表明,通过改变诸如燃料棒包层材料,其厚度以及在开发用于高温核动力装置(HT NPI)的燃料棒时的运行时间等参数,可以排除进入通过密封的燃料棒包层将铯转化为钠。但是,如果燃料棒包壳失去密封性,那么使用钠中的铯的HT NPI将不可避免。在这种条件下,必须采取措施从铯中深度纯化钠,以最大程度地减少铯向结构材料中的扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号