首页> 外文期刊>Thermal engineering >Investigation of Heat Transfer and Pressure Drop in an Annular Channel with Heat Transfer Intensifies
【24h】

Investigation of Heat Transfer and Pressure Drop in an Annular Channel with Heat Transfer Intensifies

机译:强化传热的环形通道内传热和压降研究

获取原文
获取原文并翻译 | 示例
       

摘要

Results from systematic investigations of heat transfer and pressure drop for water flow in an annular channel using an efficient method for enhancing heat transfer on a convex heating surface are presented. The main technical data of the thermal-hydraulic experimental setup are given together with a brief description of the control, monitoring, and physical parameters measurement and recording systems, as well as primary experimental data processing and storage system. The test section, the enhancement method based on setting up swirl flows, the geometrical characteristics of intensifiers, their schematic design, and installation technology are described. The experimental data are obtained in a wide range of coolant flow parameters under the conditions of single-phase convection with using intensifiers having different shapes. The test measurements carried out on a smooth annular channel showed good agreement with the classic correlations both for heat transfer and pressure drop, thereby confirming reliability of the experimental data. A considerable improvement in heat removal efficiency on the convex heating surface is obtained. The value of heat transfer coefficient is a factor of 1.8 higher than it is for smooth annular channels. The region of the values of inten-sifier geometrical characteristics and Reynolds numbers for which the growth of heat transfer prevails over the growth of pressure drop is established. It is shown that the maximums of heat transfer and pressure drop are observed at quite definite values of intensifier geometrical characteristics. The primary experimental data are processed and presented as a dependence of the Nusselt number on the Reynolds number for different values of the intensilier's relative fin height H. The value of H at which heat transfer reaches its maximum is found. The experiments were carried out in the pressure range p= 3.0-10.0 MPa and at the constant temperature of liquid at the test section inlet equal to 100℃. The influence of peripheral liquid flow swirling pitch on heat transfer and pressure drop is studied. An empirical correlation describing the dependence of heat transfer on the intensifier geometrical characteristics is obtained.
机译:提出了使用有效的方法来增强凸面加热面上的热传递的系统研究结果,该研究结果是对环形通道中水流的热传递和压降进行系统研究的结果。给出了热工实验装置的主要技术数据,并简要介绍了控制,监视和物理参数测量与记录系统,以及主要的实验数据处理和存储系统。描述了测试部分,基于设置旋流的增强方法,增压器的几何特性,其原理图设计以及安装技术。使用具有不同形状的增压器,在单相对流条件下的各种冷却剂流量参数范围内均可获得实验数据。在光滑的环形通道上进行的测试测量结果与传热和压降的经典相关性都很好地吻合,从而证实了实验数据的可靠性。在凸状加热表面上的除热效率获得了显着的提高。传热系数的值比光滑环形通道的传热系数高1.8倍。确定了强化剂几何特征和雷诺数的值的区域,在该区域中,传热的增长高于压降的增长。结果表明,在增压器几何特性的相当确定的值处观察到了最大的传热和压降。处理初始实验数据,并将其表示为对于强化剂的相对翅片高度H的不同值,努塞尔数对雷诺数的依赖性。找到了传热达到最大值时的H值。实验是在p = 3.0-10.0 MPa的压力范围内进行的,并且在测试段入口处的液体恒定温度等于100℃的情况下进行。研究了外围液流回旋螺距对传热和压降的影响。获得描述传热对增压器几何特性的依赖性的经验相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号