首页> 外文期刊>Theory in Biosciences >Multi-scale genetic dynamic modelling II: application to synthetic biology An algorithmic Markov chain based approach
【24h】

Multi-scale genetic dynamic modelling II: application to synthetic biology An algorithmic Markov chain based approach

机译:多尺度遗传动力学建模II:在合成生物学中的应用基于算法马尔可夫链的方法

获取原文
获取原文并翻译 | 示例
           

摘要

We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597–607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi:10.1007/s12064-011-0125-0, 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called ‘average dynamics’ is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293–326, 2010). The advantage of the ‘average dynamics’ framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the ‘gene’ concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335–338, 2000; Gardner et al., Nature 403(6767):339–342, 2000; Hasty et al., Nature 420(6912):224–230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
机译:我们详细模拟了Atkinson等人设计的简单合成遗传时钟。 (Cell 113(5):597-607,2003),使用大肠杆菌作为宿主生物。基于此工程时钟,其理论描述使用Kirkilionis等人提出的建模框架。 (Theory Biosci.doi:10.1007 / s12064-011-0125-0,2011,此卷)。这篇附带文章的主要目的是说明,一旦接受了我们称为“平均动力学”的模型框架,就可以对建模过程的一部分进行算法自动化(Sbano和Kirkilionis,WMI预印本7 / 2007,2008c; Kirkilionis和Sbano,Adv Complex Syst 13(3):293–326,2010年)。 “平均动力学”框架的优势在于,系统组件(尤其是遗传学组件)可以更轻松地在模型中表示。特别地,如果一经发现和表征,就可以掺入特定的分子分子及其功能。这意味着,例如,“基因”概念变得更加清晰,例如,遗传成分在不同监管条件下的反应方式。使用该框架,至少在可以估计监管单位数量的情况下,将数学建模与生物信息学的新型工具联系起来已成为一个现实的目标。在任何情况下,这都应归因于合成环境,因为不同合成遗传成分是简单已知的事实(Elowitz和Leibler,自然403(6767):335-338,2000; Gardner等人,自然403(6767): 339-342,2000; Hasty等人,Nature 420(6912):224-230,2002)。因此,本文作为必要的第一步,说明了如何对具有已知分子成分的分子相互作用进行详细建模,从而得出可以与各种水平或规模的实验结果进行比较的动态数学模型。不同的遗传模块或组件由模型变体以不同的细节表示。我们将解释该框架如何在调节和反馈方面用于研究其他更复杂的遗传系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号