...
首页> 外文期刊>Theory of computing systems >Approximation Algorithms for Fragmenting a Graph Against a Stochastically-Located Threat
【24h】

Approximation Algorithms for Fragmenting a Graph Against a Stochastically-Located Threat

机译:针对随机定位的威胁对图进行碎片化的近似算法

获取原文
获取原文并翻译 | 示例
           

摘要

Motivated by issues in allocating limited preventative resources to protect a landscape against the spread of a wildfire from a stochastic ignition point, we give approximation algorithms for a new family of stochastic optimization problems. We study several models in which we are given a graph with edge costs and node values, a budget, and a probabilistic distribution over ignition nodes: the goal is to find a budget-limited set of edges whose removal protects the largest expected value from being reachable from a stochastic ignition node. In particular, 2-stage stochastic models capture the tradeoffs between preventative treatment and real-time response. The resulting stochastic cut problems are interesting in their own right, and capture a number of related interdiction problems, both in the domain of computational sustainability, and beyond. In trees, even the deterministic problem is (weakly) NP hard: we give a Polynomial-time approximation scheme for the single-stage stochastic case in trees when the number of scenarios is constant. For the 2-stage stochastic model in trees we give a -approximation in trees which violates the budget by a factor of at most 2 (delta is the tree diameter), and a 0.387-approximation that is budget-balanced. For the single-stage stochastic case in trees we can save (1- (1 - 1/delta) (delta)) OPT without violating the budget. Single-stage results extend to general graphs with an additional O(log n) loss in budget-balancedness. Multistage results have a similar extension when the number of scenarios is constant. In an extension of the single-stage model where both ignition and spread are stochastic we give a -approximation in trees. Our approximation guarantees in trees also hold for multistage and probabilistic-element-failure generalizations of the Maximum Coverage with Knapsack Constraint problem (MCKP).
机译:受分配有限的预防性资源以保护景观免受随机点火点的野火蔓延影响的问题启发,我们给出了一系列新的随机优化问题的近似算法。我们研究了几种模型,在模型中给出了边成本和节点值,预算以及点火节点上概率分布的图形:目标是找到一组预算有限的边,其去除可保护最大的期望值不被破坏。可从随机点火节点到达。特别是,两阶段随机模型可以捕捉预防性治疗和实时响应之间的权衡。由此产生的随机割问题本身很有趣,并且捕获了许多相关的拦截问题,无论是在计算可持续性方面还是在其他方面。在树中,即使确定性问题也(弱)是NP困难的:当场景数量恒定时,我们为树中的单阶段随机情况提供了多项式时间近似方案。对于树木中的两阶段随机模型,我们给出树木中的-近似值,该近似值最多超出预算2倍(δ是树的直径),而0.387近似值则是预算平衡的。对于树木中的单阶段随机情况,我们可以节省(1-(1-1-δ)(delta))OPT,而不会违反预算。单阶段结果扩展到一般图,预算平衡性另外损失O(log n)。当方案数量恒定时,多阶段结果具有类似的扩展。在单阶段模型的扩展中,点火和扩散都是随机的,我们在树中给出了-近似值。我们在树中的近似保证也适用于带背包约束最大覆盖率问题(MCKP)的多阶段和概率元素失效一般化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号