首页> 外文期刊>Theoretical and applied climatology >Enhanced temperature variability in high-altitude climate change
【24h】

Enhanced temperature variability in high-altitude climate change

机译:高海拔气候变化中增强的温度可变性

获取原文
获取原文并翻译 | 示例
           

摘要

In the present article, monthly mean temperature at 56 stations assembled in 18 regional groups in 10 major mountain ranges of the world were investigated. The periods of the analysis covered the last 50 to 110 years. The author found that the variability of temperature in climatic time scale tends to increase with altitude in about 65 % of the regional groups. A smaller number of groups, 20 %, showed the fastest change at an intermediate altitude between the peaks (or ridges) and their foot, while the remaining small number of sites, 15 %, showed the largest trends at the foot of mountains. This tendency provides a useful base for considering and planning the climate impact evaluations. The reason for the amplification of temperature variation at high altitudes is traced back to the increasing diabatic processes in the mid-and high troposphere as a result of the cloud condensation. This situation results from the fact that the radiation balance at the earth's surface is transformed more efficiently into latent heat of evaporation rather than sensible heat, the ratio between them being 4 to 1. Variation in the surface evaporation is converted into heat upon condensation into cloud particles and ice crystals in the mid- and high troposphere. Therefore, this is the altitude where the result of the surface radiation change is effectively transferred. Further, the low temperature of the environment amplifies the effect of the energy balance variation on the surface temperature, as a result of the functional shape of Stefan-Boltzmann law. These processes altogether contribute to enhancing temperature variability at high altitudes. The altitude plays an important role in determining the temperature variability, besides other important factors such as topography, surface characteristics, cryosphere/tem-perature feedback and the frequency and intensity of an inversion. These processes have a profound effect not only on the ecosystem but also on glaciers and permafrost.
机译:在本文中,调查了世界10个主要山脉的18个区域组中的56个站的月平均温度。分析期涵盖了过去50到110年。作者发现,在气候时间尺度上温度的变化趋向于随着海拔的升高而增加,约占整个区域组的65%。较少的组(20%)在峰(或山脊)和其脚之间的中间高度显示最快的变化,而其余的少数站点(15%)在山脚下显示最大趋势。这种趋势为考虑和规划气候影响评估提供了有用的基础。高空温度变化放大的原因可追溯到中高对流层由于云凝结而增加的绝热过程。这种情况是由于以下事实造成的:地球表面的辐射平衡更有效地转化为蒸发潜热而不是显热,二者之比为4:1。表面蒸发的变化在凝结成云后转化为热对流层中和高层对流层中的颗粒和冰晶。因此,这是有效地传递表面辐射变化结果的高度。此外,由于Stefan-Boltzmann定律的函数形状,环境的低温放大了能量平衡变化对表面温度的影响。这些过程总共有助于增强高海拔地区的温度变化性。除了其他重要因素,例如地形,表面特征,冰冻圈/温度反馈以及反演的频率和强度外,海拔高度在确定温度变化方面也起着重要作用。这些过程不仅对生态系统产生深远影响,而且对冰川和永久冻土也产生深远影响。

著录项

  • 来源
    《Theoretical and applied climatology》 |2012年第4期|499-508|共10页
  • 作者

    Atsumu Ohmura;

  • 作者单位

    Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (E.T.H.), Universitaetsstrasse 16, Zuerich, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号