首页> 外文期刊>Surface Science >Transient desorption of HD and D_2 molecules from the D/Si(100) surfaces exposed to a modulated H-beam
【24h】

Transient desorption of HD and D_2 molecules from the D/Si(100) surfaces exposed to a modulated H-beam

机译:HD和D_2分子从D / Si(100)表面暴露于调制的H射线的瞬态解吸

获取原文
获取原文并翻译 | 示例
           

摘要

We have studied the direct and indirect abstraction of D adatoms by H on the Si(100) surfaces by employing a pulsed H-beam. Desorptions of HD molecules is found to occur promptly as a result of direct abstraction at the beam on-cycles. In contrast, we find that D_2 desorption induced by adsorption of H atoms, i.e., the so-called adsorption-induced desorption (AID), occurs even at the beam off-cycles. The D_2 rate curves measured with the pulsed-H beam are decomposed into four components characterized with the reaction lifetimes of ≤ 0.005, 0.06 ± 0.01, 0.8 ± 0.1, and 30 ± 5 s. We propose that the fastest and the second fastest AID channels are related to the thermodynamical instability of (1 × 1) dihydride domains locally formed on the (3 × 1) monodeuteride/dideuteride domains. The 0.8 s AID channel is attributed to the desorption occurring at the stage when (3 × 1) monodeuteride/dideuteride domains are built up upon H adsorption onto the (2 × 1) monohydride surface. The 30 s AID path is attributed to the thermal desorption accompanied by the shrinkage of the (3 × 1) domains which were excessively formed during the beam on-cycles on the (2 × 1) monohydride surface. Atomistic mechanisms are proposed for these three AID pathways.
机译:我们已经研究了通过使用脉冲H射线在Si(100)表面上H对D原子的直接和间接抽象。发现HD分子的解吸迅速发生是由于束周期的直接抽象。相反,我们发现,即使在束周期外,由H原子的吸附引起的D_2解吸,即所谓的吸附诱导解吸(AID)也发生。用脉冲H束测量的D_2速率曲线分解为四个成分,其特征是反应寿命≤0.005、0.06±0.01、0.8±0.1和30±5 s。我们建议最快和第二快的AID通道与(3×1)单氘/二氘化物域上局部形成的(1×1)二氢化物域的热力学不稳定性有关。 0.8 s的AID通道归因于在H吸附到(2×1)一元氢化物表面时建立(3×1)一元氘化/二氘化物域的阶段发生的解吸。 30 s的AID路径归因于热解吸,伴随着(3×1)域的收缩,这是在(2×1)一元氢化物表面上的束开启循环中过度形成的。针对这三种AID途径提出了原子机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号