Highl'/> Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO_2 rutile (110) surface within the context of water splitting
首页> 外文期刊>Surface Science >Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO_2 rutile (110) surface within the context of water splitting
【24h】

Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO_2 rutile (110) surface within the context of water splitting

机译:分水作用下TiO_2金红石(110)表面上过氧化氢和乙醇的吸附模式和电子结构研究

获取原文
获取原文并翻译 | 示例
           

摘要

HighlightsGeometric and electronic structure of H2O2adsorbed on TiO2(110) are studied computationally.Its adsorption energy (fully dissociated) of 0.95 eV is comparable to that of ethanol.The (-) changes in the work function are highest for molecular adsorption and lowest for the fully dissociated mode.DOS indicated that the H2O2HOMO level is not overlapping with O3catoms of TiO2surface.AbstractWhile photocatalytic water splitting over many materials is favourable thermodynamically the kinetic of the reaction is very slow. One of the proposed reasons linked to the slow oxidation reaction rate is H2O2formation as a reaction intermediate. Using Density Functional Theory (DFT) H2O2is investigated on TiO2rutile (110) surface to determine its most stable adsorption modes: molecular, (H)O(H)O − (a), partially dissociated, (H)OO − (a), and fully dissociated (a) − OO − (a). We then compare H2O2interaction to that of a fast hole scavenger molecule, ethanol. Geometry, electronic structure, charge density difference and work function determination of both adsorbates are presented and compared using DFT with different functionals (PBE, PBE-D, PBE-U, and HSE + D). H2O2is found to be strongly adsorbed on TiO2rutile (110) surface with adsorption energies reaching 0.95 eV, comparable to that of ethanol (0.89 eV); using GGA PBE. The negative changes in the work function upon adsorption were found to be highest for molecular adsorption ( − 1.23 eV) and lowest for the fully dissociated mode ( − 0.54 eV) of H2O2. This may indicate that electrons flow from the surface to the adsorbate in order to make O(s)-H partially offset the overall magnitude of the oxygen lone pair interaction (of H2O2) with Ti4+cations. Examination of the electronic structure through density of states (DOS) at the PBE level of computation, indicates that the H2O2highest occupied molecular orbital (HOMO) level is not overlapping with oxygen atoms of TiO2surface at any of its adsorption modes and at any of the computation methods. Some overlap is seen using the HSE + D computational method. On the other hand the dissociated mode of ethanol (ethoxides) does overlap with all computational methods used. The high adsorption energy and the absence of overlapping of the HOMO level of H2O2with TiO2rutile (110) surface may explain why water splitting is slow.
机译: 突出显示 H 2 O 的几何和电子结构2 吸附在TiO 2 (110)上的计算研究。 其0.95 eV的吸附能(完全解离)与 功函数的(-)变化对于分子吸附是最高的,而最低f或完全分离的模式。 DOS指示H 2 O 2 HOMO能级与TiO 2 表面的O 3c 原子不重叠。 摘要 2 O 2 形成作为反应中间体。使用密度泛函理论(DFT)在TiO 2 O 2 inf loc =“ post”> 2 金红石(110)表面,确定其最稳定的吸附模式:分子,(H)O(H)O −(a),部分解离,(H)OO − (a)和完全解离的(a)-OO-(a)。然后,我们将H 2 O 2 的相互作用与快速空穴清除剂分子乙醇的相互作用进行比较。提出了两种吸附物的几何形状,电子结构,电荷密度差和功函数的确定方法,并使用了具有不同功能(DBE,PBE-D,PBE-U和HSE + D)的DFT进行了比较。发现H 2 O 2 强烈吸附在TiO 2 金红石(110)表面,其吸附能达到0.95 eV,与乙醇(0.89 eV)相当;使用GGA PBE。发现H 2 O 2 。这可能表明电子从表面流向被吸附物,从而使O( s )-H部分抵消了氧孤对相互作用的整体强度(H 2 O 2 )和Ti 4 + 阳离子。在计算的PBE级别上通过状态密度(DOS)检验电子结构,表明H 2 O 2 最高占据分子轨道(HOMO)的水平与TiO 2 表面的任何氧原子在任何吸附模式下均不重叠。任何一种计算方法。使用HSE + D计算方法可以看到一些重叠。另一方面,乙醇(乙醇)的解离模式确实与所有使用的计算方法重叠。 H 2 O 2 的高吸附能且HOMO水平不重叠TiO 2 金红石(110)表面可能解释了为什么水分解缓慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号