首页> 外文期刊>Surface Innovations >Zinc L-phenylalanine chelate nanofiber anode in lithium ion battery
【24h】

Zinc L-phenylalanine chelate nanofiber anode in lithium ion battery

机译:锂离子电池中L-苯丙氨酸锌螯合纳米纤维阳极

获取原文
获取原文并翻译 | 示例
           

摘要

As one kind of metal-organic framework material, zinc L-phenylalanine chelate may combine the merits of organic and inorganic components at the molecular level, thus making it a preferred anode active material. However, reports about zinc L-phenylalanine chelate anodes for lithium (Li) ion batteries are still scarce at the moment. Herein, shape-controlled synthesis of zinc L-phenylalanine chelate was carried out through a facile liquid-phase precipitation reaction and subsequent lyophilization. The obtained zinc L-phenylalanine chelate was investigated by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, galvanostatic charge/discharge and cyclic voltammetry. The results suggest that zinc L-phenylalanine chelate appeared as uniform nanofibers about 140 nm diameter and 2-5 mu m long. Furthermore, the zinc L-phenylalanine chelate nanofiber anode exhibited satisfactory electrochemical performances. For example, the initial specific discharge capacity was as high as 255 mAh/g at 100 mA/g and the reversible capacity remained 109 mAh/g even at 1000 mA/g for 200 cycles. Additionally, the possible lithium-storage mechanism was also explored. The synergistic effect of the combination of organic/inorganic components at the molecular level, regular nanofiber-like morphology and structural cavities may facilitate good strain accommodation, short ionic/electronic transport paths and high electrochemical performance.
机译:作为一种金属-有机骨架材料,L-苯丙氨酸锌螯合物可以在分子水平上结合有机和无机成分的优点,因此使其成为优选的负极活性材料。然而,关于锂(Li)离子电池的L-苯丙氨酸锌螯合阳极的报道目前仍很少。在此,通过容易的液相沉淀反应和随后的冻干进行L-苯基丙氨酸锌螯合物的形状受控的合成。通过场发射扫描电子显微镜,能量色散X射线光谱,透射电子显微镜,X射线衍射,傅里叶变换红外光谱,X射线光电子能谱,热重分析,恒电流电荷/放电和循环伏安法。结果表明,L-苯丙氨酸锌螯合物表现为直径约140 nm,长度2-5μm的均匀纳米纤维。此外,锌L-苯丙氨酸螯合纳米纤维阳极表现出令人满意的电化学性能。例如,在100mA / g下的初始比放电容量高达255mAh / g,并且即使在1000mA / g下可逆容量也保持109mAh / g,持续200个循环。此外,还探讨了可能的锂存储机制。有机/无机组分在分子水平,规则的纳米纤维状形态和结构空腔的组合的协同作用可以促进良好的应变适应,短的离子/电子传输路径和高电化学性能。

著录项

  • 来源
    《Surface Innovations》 |2019年第1期|27-35|共9页
  • 作者单位

    Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China;

    Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China;

    Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming, Yunnan, Peoples R China;

    Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China;

    Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China;

    Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    energy storage; material chemistry; hanomaterials;

    机译:储能;材料化学;汉诺材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号