首页> 外文期刊>Superlattices and microstructures >Band dispersion and optical gain calculations of staggered type GaAs_(0.4)Sb_(0.6)/In_(0.7)Ga_(0.3)As/GaAs_(0.4)Sb_(0.6) nano-heterostructure under electric field and [100] strain
【24h】

Band dispersion and optical gain calculations of staggered type GaAs_(0.4)Sb_(0.6)/In_(0.7)Ga_(0.3)As/GaAs_(0.4)Sb_(0.6) nano-heterostructure under electric field and [100] strain

机译:带分散和光学增益计算的交错型GaAs_(0.4)Sb_(0.6)/ In_(0.7)Ga_(0.3)AS / GaAs_(0.4)Sb_(0.6)纳米异质结构在电场下和[100]应变

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the numerical calculations for the band dispersion in GaAs_(0.4)Sb_(0.6)/In_(0.7)Ga_(0.3)As/GaAs_(0.4)Sb_(0.6) staggered nano-scale heterostructure have been carried out for different values of the external electric field (0-200 kV/cm) by solving the 6 × 6 k. p Hamiltonian. In addition, the optical matrix elements have been calculated and their behaviors have been predicted for different values of field, strains and temperature. For the different values of charge carrier's injection, different field strengths and different strains along [100], the optical gain within TE (Transverse Electric) and TM (Transverse Magnetic) modes have been simulated. The maximum optical gain is achieved ~16170/cm at ~2000 nm at room temperature without electric field; whereas under the external electric field of 60 kV/cm at room temperature the optical gain was found to be reduced up to ~11807/cm at ~1955 nm. Further, with the external strain of 8 Gpa, the optical gain was found to be 13965/cm at 2079 nm. Moreover, the optical gain was found to shift towards lower values with red shift in wavelength at room temperature within TE and TM modes with increasing external strain along [100] direction. On behalf of the outcomes of the simulation, the modeled heterostructure can be utilized in the design of tunable laser diode operating in MIR (mid infrared region) region.
机译:在本文中,已经对GaAs_(0.4)Sb_(0.6)/ In_(0.7)Ga_(0.7)Ga_(0.3)Sb_(0.6)交错纳米级异质结构进行了数值计算已经进行了不同的通过求解6×6 k的外部电场(0-200kV / cm)的值。 P Hamiltonian。另外,已经计算了光学矩阵元件,并且已经预测了它们的行为,用于不同的场,菌株和温度。对于电荷载体的注射值不同,沿[100]的不同场强和不同的菌株,已经模拟了TE(横向电)和TM(横向磁)模式的光学增益。在没有电场的室温下在〜2000nm处实现最大光学增益〜16170 / cm;虽然在室温下60kV / cm的外电场下,发现光学增益在1955纳米〜1955℃下减少至〜11807 / cm。此外,对于8GPa的外部应变,发现光学增益在2079nm处为13965 / cm。此外,发现光学增益在TE和TM模式内在室温下在TE和TM模式内的红色变速器向较低值转变,随着[100]方向而增加外部应变。代表模拟的结果,建模异质结构可用于在MIR(中红外区域)区域中操作的可调激光二极管的设计。

著录项

  • 来源
    《Superlattices and microstructures》 |2021年第2期|106694.1-106694.11|共11页
  • 作者单位

    Department of Electronics and Communication Engineering Manipal University Jaipur Rajasthan India;

    Department of Electronics and Communication Engineering Manipal University Jaipur Rajasthan India;

    Department of Electronics & Communication Engineering Integral University Lucknow 226026 UP India;

    Higher Colleges of Technology Abu Dhabi United Arab Emirates;

    Department of Chemistry Cumhuriyet University Sivas 58140 Turkey;

    Department of Physics Faculty of Science University of Tabuk P.O. Box-741 71491 Saudi Arabia;

    Department of Physics College of Science King Faisal University Hofuf Al-Ahsa 31982 Saudi Arabia Department of Physics University of Petroleum and Energy Studies Dehradun 248007 UK India;

    Department of Physics Banasthali Vidyapith 304022 Rajasthan India;

    Department of Electronics and Communication Engineering Manipal University Jaipur Rajasthan India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electric field; Strain; Optical gain; Temperature; Heterostructure;

    机译:电场;拉紧;光学增益;温度;异质结构;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号