首页> 外文期刊>Structural Safety >A combined Importance Sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables
【24h】

A combined Importance Sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables

机译:具有随机和相关区间变量的小故障概率的重要抽样和主动学习Kriging组合可靠性方法

获取原文
获取原文并翻译 | 示例
           

摘要

The existing hybrid reliability analysis (HRA) method (Yang et al., 2015; Zhang et al., 2015; Yang et al., 2015) is found not suitable for estimating small failure probabilities. Meanwhile, the previous ALK-HRA algorithm (ALKHRA: an active learning HRA method combining Kriging and Monte Carlo simulation) reduces its numerical efficiency when number of uncertain variables increases. Furthermore, the ALK-HRA approach with both random and interval/ellipsoid variables cannot deal with complex "multi-source uncertainty" problems. In order to overcome these issues, therefore, the following strategies is proposed: 1) First, a more general HRA (MGHRA) method with both random and parallelepiped convex variables is developed. Within the MGHRA method, the parallelepiped convex model is employed to describe independent and correlated interval variables in a unified framework. 2) Sequentially, we propose an original and implementable approach called ALK-MGHRA-IS for active learning MGHRA method and Kriging-based Importance Sampling. The MGHRA method, which is capable of handling the complicated "multi-source uncertainty" problems, associates the Kriging metamodel, and its advantageous stochastic property with Importance Sampling to accurately evaluate bounds of small failure probabilities with respect to interval variables. Actually, the calculated failure probability is still a random variable when the approximations of the proposed method are employed. The proposed method enables the correction of the FORM-UUA approximation with only a few function computations. To further improve the efficiency of the proposed ALK-MGHRA-IS, an optimization method based on Karush-Kuhn-Tucker conditions (KKT) is introduce to relieve the burden of searching the extreme values. Four numerical examples are investigated to demonstrate the efficiency and accuracy of the proposed method.
机译:发现现有的混合可靠性分析(HRA)方法(Yang等,2015; Zhang等,2015; Yang等,2015)不适合用于估计较小的故障概率。同时,当不确定变量的数量增加时,以前的ALK-HRA算法(ALKHRA:结合了Kriging和Monte Carlo模拟的主动学习HRA方法)会降低其数值效率。此外,同时具有随机变量和区间/椭球变量的ALK-HRA方法无法处理复杂的“多源不确定性”问题。为了克服这些问题,提出了以下策略:1)首先,开发了一种同时具有随机和平行六面体凸变量的更通用的HRA(MGHRA)方法。在MGHRA方法中,平行六面体凸模型用于在统一框架中描述独立且相关的区间变量。 2)因此,我们针对主动学习MGHRA方法和基于Kriging的重要性抽样提出了一种原始且可实现的方法,称为ALK-MGHRA-IS。 MGHRA方法能够处理复杂的“多源不确定性”问题,将Kriging元模型及其有利的随机属性与重要性采样相关联,以针对间隔变量准确评估小故障概率的界限。实际上,当采用建议方法的近似值时,计算出的故障概率仍然是随机变量。所提出的方法仅需少量的函数计算就可以校正FORM-UUA近似值。为了进一步提高提出的ALK-MGHRA-IS的效率,引入了一种基于Karush-Kuhn-Tucker条件(KKT)的优化方法,以减轻寻找极值的负担。研究了四个数值示例,以证明所提方法的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号