...
首页> 外文期刊>Structural and Multidisciplinary Optimization >Multidisciplinary and multiple operating points shape optimization of three-dimensional compressor blades
【24h】

Multidisciplinary and multiple operating points shape optimization of three-dimensional compressor blades

机译:三维压缩机叶片的多学科和多工作点形状优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The recent progress in simulation technologies in several fields such as computational fluid dynamics, structures, thermal analysis, and unsteady flow combined with the emergence of improved optimization algorithms makes it now possible to develop and use automatic optimization software and methodologies to perform complex multidisciplinary shape optimization process. In the present applications, the MAX optimization software developed at CENAERO is used to perform the optimization. This software allows performing derivative free optimization with very few calls to the computer intensive simulation software. The method employed in this paper combines the use of a genetic algorithm (with real coding of the variables) to an approximate (or meta) model to accelerate significantly the optimization process. The performance of this optimization methodology is illustrated on the optimization of three-dimensional turbomachinery blades for multiple operating points and multidisciplinary objectives and constraints. The NASA rotor 67 geometry is used to demonstrate the capabilities of the method. The aim is to find the optimal shape for three different operating conditions: one at a near peak efficiency point, one at choked mass flow, and one near the stall flow. The three points are analyzed at the same blade rotational speed but with different mass flows. A finite element structural mechanics software is used to compute the static and dynamic mechanical responses of the blade. A Navier–Stokes solver is used to calculate the aerodynamic performance. High performance computers (HPC) are used in this application. Cenaero’s HPC infrastructure contains a Linux cluster with 170 3.06 GHz Xeon processors. The optimization algorithm is parallelized using MPI.
机译:仿真技术在计算流体力学,结构,热分析和非恒定流等多个领域的最新进展,以及改进的优化算法的出现,使得开发和使用自动优化软件和方法来执行复杂的多学科形状优化成为可能处理。在当前应用中,CENAERO开发的MAX优化软件用于执行优化。该软件无需调用计算机密集型仿真软件即可执行无导数优化。本文采用的方法将遗传算法(对变量进行实际编码)与近似(或元)模型结合使用,以显着加快优化过程。在针对多个操作点以及多学科目标和约束条件对三维涡轮机叶片进行优化时,说明了此优化方法的性能。 NASA转子67的几何形状用于演示该方法的功能。目的是在三种不同的运行条件下找到最佳形状:一种在接近峰值效率点处,一种在阻流下,另一种在失速附近。在相同的叶片转速但质量流量不同的情况下分析这三个点。有限元结构力学软件用于计算叶片的静态和动态机械响应。 Navier–Stokes求解器用于计算空气动力学性能。高性能计算机(HPC)用于此应用程序。 Cenaero的HPC基础架构包含具有170个3.06 GHz Xeon处理器的Linux集群。优化算法使用MPI并行化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号