首页> 外文期刊>Structural health monitoring >Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks
【24h】

Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks

机译:具有来自密集传感器网络的大振动数据的结构健康监测快速无监督学习方法

获取原文
获取原文并翻译 | 示例
           

摘要

Data-driven damage localization is an important step of vibration-based structural health monitoring. Statistical pattern recognition based on the prominent steps of feature extraction and statistical decision-making provides an effective and efficient framework for structural health monitoring. However, these steps may become time-consuming or complex when there are large volumes of vibration measurements acquired by dense sensor networks. To deal with this issue, this study proposes fast unsupervised learning methods for feature extraction through autoregressive modeling and damage localization through a new distance measure called Kullback–Leibler divergence with empirical probability measure. The feature extraction approach consists of an iterative algorithm for order selection and parameter estimation aiming to extract residuals in the training phase and another iterative process aiming to extract residuals only in the monitoring phase. The key feature of the proposed approach is the use of correlated residual samples of the autoregressive model as a new time series at each iteration, rather than handling the measured vibration response of the structure. This is shown to highly reduce the computational burden of order selection and feature extraction; moreover, it effectively provides low-order autoregressive models with uncorrelated residuals. The Kullback–Leibler divergence with empirical probability measure method exploits a segmentation technique to subdivide random data into independent sets and provides a distance metric based on the theory of empirical probability measure with no need to explicitly compute the actual probability distributions at the training and monitoring stages. Numerical and experimental benchmarks are then used to assess accuracy and performance of the proposed methods and compare them with some state-of-the-art approaches. Results show that the proposed approaches are successful in feature extraction and damage localization, with a reduced computational burden.
机译:数据驱动损伤定位是基于振动的结构健康监测的重要步骤。基于特征提取和统计决策的突出步骤的统计模式识别为结构健康监测提供了有效和有效的框架。然而,当通过密集传感器网络获取的大量振动测量,这些步骤可能变得耗时或复杂。要处理这个问题,本研究提出了通过自回归建模和损坏定位通过具有经验概率措施的新距离测量来提供快速无监督的学习方法。该特征提取方法包括迭代算法,用于订购选择和参数估计,其旨在提取训练阶段中的残差和旨在仅在监测阶段中提取残留的另一迭代过程。所提出的方法的关键特征是在每次迭代时使用自回归模型的相关剩余样本作为新的时序序列,而不是处理结构的测量振动响应。这被认为是高度降低订单选择和特征提取的计算负担;此外,它有效地提供了具有不相关的残留物的低阶自回归模型。具有经验概率测量方法的Kullback-Leibler发散利用分段技术将随机数据细分为独立集,并基于经验概率测量的理论提供距离度量,无需明确地计算训练和监控阶段的实际概率分布。然后使用数值和实验基准来评估所提出的方法的准确性和性能,并将它们与一些最先进的方法进行比较。结果表明,该拟议方法在特征提取和损害本地化方面取得了成功,减少了计算负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号