...
首页> 外文期刊>Structural Engineering and Mechanics >Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects
【24h】

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

机译:考虑团聚效应的嵌入式CNT增强微型Mindlin圆柱壳振动分析的应变梯度理论

获取原文
获取原文并翻译 | 示例

摘要

Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.
机译:基于应变梯度理论(SGT),研究了碳纳米管(CNTs)增强的嵌入式微圆柱壳的振动分析。弹性介质由正交各向异性的Pasternak基础模拟。该结构在轴向上经受磁场。为了获得等效的结构材料特性并考虑团聚效应,使用了Mori-Tanaka模型。运动方程是基于Mindlin圆柱壳理论,能量方法和汉密尔顿原理导出的。提出了差分正交方法(DQM)来评估系统在不同边界条件下的频率。在结构的频率上显示了诸如碳纳米管的体积百分比,碳纳米管的团聚,弹性介质,磁场,边界条件,长径比和小比例参数等不同参数的影响。结果表明,碳纳米管的团聚效应在系统频率中起着重要作用,因此考虑到团聚会降低系统频率。此外,结构的频率随着小尺度参数的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号