...
首页> 外文期刊>Statistics and computing >A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces
【24h】

A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

机译:遗传算法微分进化的马尔可夫链蒙特卡洛(Markov Chain Monte Carlo)版本:对实际参数空间的简单贝叶斯计算

获取原文
获取原文并翻译 | 示例

摘要

Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas of DE and MCMC, resulting in Differential Evolution Markov Chain (DE-MC). DE-MC is a population MCMC algorithm, in which multiple chains are run in parallel. DE-MC solves an important problem in MCMC, namely that of choosing an appropriate scale and orientation for the jumping distribution. In DE-MC the jumps are simply a fixed multiple of the differences of two random parameter vectors that are currently in the population. The selection process of DE-MC works via the usual Metropolis ratio which defines the probability with which a proposal is accepted. In tests with known uncertainty distributions, the efficiency of DE-MC with respect to random walk Metropolis with optimal multivariate Normal jumps ranged from 68% for small population sizes to 100% for large population sizes and even to 500% for the 97.5% point of a variable from a 50-dimensional Student distribution. Two Bayesian examples illustrate the potential of DE-MC in practice. DE-MC is shown to facilitate multidimensional updates in a multi-chain "Metropolis-within-Gibbs" sampling approach. The advantage of DE-MC over conventional MCMC are simplicity, speed of calculation and convergence, even for nearly collinear parameters and mul-timodal densities.
机译:差分演化(DE)是用于实参空间中数值优化的简单遗传算法。在统计的背景下,人们不仅需要最优,而且还需要不确定性。不确定性分布可以使用马尔可夫链蒙特卡洛(MCMC)模拟通过贝叶斯分析(在指定先验和似然性之后)获得。本文融合了DE和MCMC的基本思想,从而产生了差分进化马尔可夫链(DE-MC)。 DE-MC是总体MCMC算法,其中多个链并行运行。 DE-MC解决了MCMC中的一个重要问题,即为跳跃分布选择合适的比例和方向。在DE-MC中,跳跃只是当前总体中两个随机参数向量之差的固定倍数。 DE-MC的选择过程通过通常的都会比率来确定,该比率定义了接受提案的可能性。在具有不确定性分布的已知测试中,相对于具有最佳多元正态跳变的随机行走都会区,DE-MC的效率范围从小人口规模的68%到大人口规模的100%,甚至在97.5%的点上达到500%来自50维学生分布的变量。两个贝叶斯例子说明了DE-MC在实践中的潜力。展示了DE-MC在多链“大都市内吉布斯”采样方法中促进了多维更新。与传统的MCMC相比,DE-MC的优势在于简单,计算速度快和收敛性好,即使对于几乎共线的参数和多峰密度也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号