首页> 外文期刊>Statistical science >Estimating Random Effects via Adjustment for Density Maximization
【24h】

Estimating Random Effects via Adjustment for Density Maximization

机译:通过调整密度最大化来估计随机效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We develop and evaluate point and interval estimates for the random effects θ_i, having made observations y_i│θ_i ~(ind) N[θ_i,V-i],i =1,…,k that follow a two-level Normal hierarchical model. Fitting this model requires assessing the Level-2 variance A ≡ Var(θ_i) to estimate shrinkages B_i =V_i/(V_i + A) toward a (possibly estimated) subspace, with B_i, as the target because the conditional means and variances of θ_i depend linearly on B_i, not on A. Adjustment for density maximization, ADM, can do the fitting for any smooth prior on A. Like the MLE, ADM bases inferences on two derivatives, but ADM can approximate with any Pearson family, with Beta distributions being appropriate because shrinkage factors satisfy 0 ≤ B_i, ≤ 1.Our emphasis is on frequency properties, which leads to adopting a uniform prior on A ≥ 0, which then puts Stein's harmonic prior (SHP) on the k random effects. It is known for the “equal variances case” V_1 =… =V_k that formal Bayes procedures for this prior produce admissible minimax estimates of the random effects, and that the posterior variances are large enough to provide confidence intervals that meet their nominal coverages. Similar results are seen to hold for our approximating “ADM-SHP” procedure for equal variances and also for the unequal variances situations checked here.For shrinkage coefficient estimation, the ADM-SHP procedure allows an alternative frequency interpretation. Writing L(A) as the likelihood of B_i with I fixed, ADM-SHP estimates B_i as (B)_i =V_i/(V_i + A) with A ≡argmax(A * L(A)). This justifies the term “adjustment for likelihood maximization,” ALM.
机译:我们遵循两层法线分层模型,观察到y_i│θ_i〜(ind)N [θ_i,V-i],i = 1,…,k,从而开发和评估随机效应θ_i的点和区间估计。要拟合此模型,需要评估2级方差A≡Var(θ_i),以B_i为目标来估计朝着(可能是估计的)子空间的收缩B_i = V_i /(V_i + A),因为θ_i的条件均值和方差线性最大化取决于B_i,而不取决于A。对密度最大化的调整ADM可以对A上的任何平滑先验进行拟合。像MLE一样,ADM可以基于两个导数进行推论,但是ADM可以与任何具有Beta分布的Pearson家族近似因为收缩因子满足0≤B_i,≤1是适当的,所以我们的重点是频率特性,这导致对A≥0采用统一的先验,然后将斯坦因谐波先验(SHP)置于k个随机效应上。众所周知,对于“等方差情况” V_1 =…= V_k,此先验的正式贝叶斯程序会产生可接受的随机效应的minimax估计,并且后验方差足够大,可以提供满足其名义覆盖范围的置信区间。对于均方差近似的“ ADM-SHP”程序以及此处检查的不均方差情况,也可以看到类似的结果。对于收缩系数估计,ADM-SHP程序允许使用另一种频率解释。将L(A)写为B_i的可能性(固定为I),ADM-SHP估计B_i为(B)_i = V_i /(V_i + A),且A argmax(A * L(A))。这证明了术语“似然性最大调整” ALM。

著录项

  • 来源
    《Statistical science》 |2011年第2期|p.271-287|共17页
  • 作者

    Carl Morris; Ruoxi Tang;

  • 作者单位

    Department of Statistics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138, USA;

    rnHarvard's Statistics Department and is with a New York investment firm, Bloomberg L.P.,731 Lexington Ave., New York, New York 10022, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shrinkage; ADM; Normal multilevel model; Steinestimation; objective Bayes;

    机译:收缩率ADM;普通多级模型;运动障碍客观贝叶斯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号