...
首页> 外文期刊>SPE Reservoir Evaluation & Engineering >Improved Compaction Modeling Inreservoir Simulation And Coupled Rockrnmechanics/flow Simulation, Withrnexamples From The Valhall Field
【24h】

Improved Compaction Modeling Inreservoir Simulation And Coupled Rockrnmechanics/flow Simulation, Withrnexamples From The Valhall Field

机译:改进的压实建模储层模拟和耦合的岩石力学/流动模拟,以Valhall油田为例

获取原文
获取原文并翻译 | 示例

摘要

In traditional flow simulation, compaction is modeled as a function of fluid pressure, whereas in reality, it is dependent on effective stress (e.g., mean effective and shear stress). Therefore, although compaction computed by a flow simulator may be correct on a regional average basis, the true variation throughout the reservoir (both spatial and temporal) cannot be accounted for by a traditional approach. A stress simulator (i.e., geomechanics model) honoring material properties, rock mechanical boundary conditions, and material-to-material interaction is needed to achieve this compaction. Especially for sands, chalk, and other weak materials, which in general, have a compaction-dependent permeability, the spatial variation of compaction may have a significant impact on the flow pattern. The industry standard approach for computing true compaction is by either doing a fully coupled simulation or by using partial coupling with pore-volume iterations, both typically being expensive in terms of computer processor time. For this reason, the simplified compaction calculations are often used in practice thus disregarding actual physics in the reservoir simulation.rnIn this paper, we describe a procedure whereby a modified (pseudo) material definition is constructed and used to improve compaction calculations by the flow simulator. The construction is based on results from a simplified, coupled flow-stress simulation, typically consisting of three to six explicit stress steps.rnThe resulting compaction field is comparable to the true one and represents a significant improvement over the traditional approach. This compaction state is the optimal input to the stress simulator in a coupled scheme and, therefore, assures the rock mechanics calculations can be performed with maximum efficiency. By using our suggested procedure, the pore-volume iterations in a coupled scheme are eliminated or significantly reduced, and the simulated reservoir state is accurate at all times-not only when stress simulations are performed. Our main goal is to reduce the total computer time in iterative-coupled simulations without loss of accuracy, especially focusing on two mechanistic models from the Valhall field, which is a highly compacting chalk reservoir in the North Sea. We also demonstrate benefits of using the procedure in a simplified form to increase accuracy in reservoir simulation for reservoirs in which coupled simulation is traditionally not seen as needed because of either a perceived lack of complexity or the computing costs.rnIn this paper, we demonstrate that the developed construction methodology is general in use. Further, the maximum permitted difference between flow-simulator calculated compaction and true compaction (i.e., computed from strain using a geomechanics simulator) is user-controlled, such that by proper definition of this parameter, the coupled simulation in most cases can be guaranteed to converge at the first pore-volume iteration.
机译:在传统的流量模拟中,将压实建模为流体压力的函数,而实际上,压实取决于有效应力(例如,平均有效应力和剪切应力)。因此,尽管由流量模拟器计算的压实在区域平均水平上可能是正确的,但是传统方法无法解决整个储层(空间和时间)上的真实变化。为了实现这种压实,需要一种应力模拟器(即地质力学模型)来纪念材料的特性,岩石的机械边界条件以及材料与材料之间的相互作用。特别是对于通常具有取决于压实度的渗透性的沙子,白垩和其他弱材料,压实度的空间变化可能会对流型产生重大影响。用于计算真实压实度的行业标准方法是通过执行完全耦合模拟或通过将部分耦合与孔隙体积迭代一起使用,这两种方法通常在计算机处理器时间方面都很昂贵。由于这个原因,简化的压实计算在实践中经常被使用,因此在油藏模拟中忽略了实际的物理过程。rn在本文中,我们描述了一种程序,在该过程中,构造了修改的(伪)材料定义并用于通过流动模拟器改进压实计算。该构造基于简化的耦合流应力模拟的结果,通常包括三到六个显式应力步。rn所产生的压实场可与真实的压实场相媲美,并且代表了对传统方法的显着改进。这种压实状态是耦合方案中应力模拟器的最佳输入,因此,可以确保以最高效率执行岩石力学计算。通过使用我们建议的程序,可以消除或显着减少耦合方案中的孔隙体积迭代,而且模拟储层的状态始终保持精确-不仅是在执行应力模拟时。我们的主要目标是在不降低精度的情况下减少迭代耦合仿真中的总计算机时间,尤其要关注Valhall油田的两个力学模型,该油田是北海的一个高度压实的白垩储层。我们还展示了以简化形式使用该程序来提高水库模拟精度的好处,对于那些由于缺乏复杂性或计算成本而传统上通常不认为需要进行耦合模拟的水库.rn在本文中,我们证明了已开发的施工方法已普遍使用。此外,用户可以控制流量模拟器计算的压实度与实际压实度(即,使用地质力学模拟器从应变计算得出)之间的最大允许差异,从而通过适当定义此参数,可以确保大多数情况下的耦合模拟能够在第一个孔体积迭代中收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号