首页> 外文期刊>Solid State Communications >Polaronic exciton in quantum wells wires and nanotubes
【24h】

Polaronic exciton in quantum wells wires and nanotubes

机译:量子阱线和纳米管中的极化子激子

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We investigate the effect of the longitudinal-optical phonon field on the binding energies of excitons in quantum wells, well-wires and nanotubes based on ionic semiconductors. We take into account the exciton-phonon interaction by using the Aldrich-Bajaj effective potential for Wannier excitons in a polarizable medium. We extend the fractional-dimensional method developed previously for neutral and negatively charged donors to calculate the exciton binding energies in these heterostructures. In this method, the exciton wave function is taken as a product of the ground state functions of the electron polaron and hole polaron with a correlation function that depends only on the electron-hole separation. Starting from the variational principle we derive a one-dimensional differential equation, which is solved numerically by using the trigonometric sweep method. We find that the potential that takes into account polaronic effects always give rise to larger exciton binding energies than those obtained using a Coulomb potential screened by a static dielectric constant. This enhancement of the binding energy is more considerable in quantum wires and nanotubes than in quantum wells. Our results for quantum wells are in a good agreement with previous variational calculations. Also, we present novel curves of the exciton binding energies as a function of the wire and nanotubes radii for different models of the confinement potential.
机译:我们研究了纵向光子声子场对基于离子半导体的量子阱,阱线和纳米管中激子的结合能的影响。我们通过在极化的介质中使用Wandier激子的Aldrich-Bajaj有效势来考虑激子与声子的相互作用。我们扩展了先前为中性和带负电荷的供体开发的分数维方法,以计算这些异质结构中的激子结合能。在该方法中,将激子波函数作为电子极化子和空穴极化子的基态函数与仅依赖于电子-空穴间隔的相关函数的乘积。从变分原理开始,我们推导出一维微分方程,使用三角扫描法对其进行数值求解。我们发现,考虑到极化子效应的电势总是会比使用通过静态介电常数筛选的库仑电势获得的激子结合能产生更大的激子结合能。结合能的这种增强在量子线和纳米管中比在量子阱中更重要。我们关于量子阱的结果与以前的变分计算非常吻合。同样,对于不同的约束电位模型,我们还给出了激子结合能随金属丝和纳米管半径变化的曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号