首页> 外文期刊>Solid State Communications >Spin quantum computation in silicon nanostructures
【24h】

Spin quantum computation in silicon nanostructures

机译:硅纳米结构中的自旋量子计算

获取原文
获取原文并翻译 | 示例
           

摘要

Proposed silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals because of their long spin coherence times due to their limited interactions with their environments. For these spin qubits, shallow donor exchange gates are frequently invoked to perform two-qubit operations. We discuss in this review a particularly important spin decoherence channel, and bandstructure effects on the exchange gate control. Specifically, we review our work on donor electron spin spectral diffusion due to background nuclear spin flip-flops, and how isotopic purification of silicon can significantly enhance the electron spin dephasing time. We then review our calculation of donor electron exchange coupling in the presence of degenerate silicon conduction band valleys. We show that valley interference leads to orders of magnitude variations in electron exchange coupling when donor configurations are changed on an atomic scale. These studies illustrate the substantial potential that donor electronuclear spins in silicon have as candidates for qubits and simultaneously the considerable challenges they pose. In particular, our work on spin decoherence through spectral diffusion points to the possible importance of isotopic purification in the fabrication of scalable solid state quantum computer architectures. We also provide a critical comparison between the two main proposed spin-based solid state quantum computer architectures, namely, shallow donor bound states in Si and localized quantum dot states in GaAs. (c) 2004 Elsevier Ltd. All rights reserved.
机译:提议的基于硅的量子计算机体系结构因其可扩展性的承诺以及协同利用与现有Si技术基础结构相关的可用资源的潜力而备受关注。 Si中的浅施主(例如磷)的电子和核自旋是此类提案中量子位的理想候选者,因为它们与环境的相互作用有限,因此自旋相干时间长。对于这些自旋量子位,经常调用浅施主交换门来执行两个量子位操作。我们在这篇综述中讨论一个特别重要的自旋退相干通道,以及能带结构对交换门控制的影响。具体而言,我们回顾了由于背景核自旋触发器而导致的供体电子自旋谱扩散的工作,以及硅的同位素纯化如何能够显着提高电子自旋相移时间。然后,我们回顾在简并的硅导带谷存在下的供体电子交换耦合计算。我们表明,当供体构型在原子尺度上改变时,谷值干扰导致电子交换耦合的数量级变化。这些研究表明,硅中的供体电子/核自旋具有巨大的潜力,可作为量子位的候选者,同时也带来了巨大的挑战。特别是,我们在通过光谱扩散进行自旋退相干的工作中指出,同位素纯化在可扩展固态量子计算机体系结构制造中可能具有重要意义。我们还提供了两种主要的基于自旋的固态量子计算机体系结构之间的关键比较,即硅中的浅施主结合态和GaAs中的局部量子点态。 (c)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号