首页> 外文期刊>Solid-State Circuits, IEEE Journal of >Sub-$mu$Vrms-Noise Sub-$mu$W/Channel ADC-Direct Neural Recording With 200-mV/ms Transient Recovery T
【24h】

Sub-$mu$Vrms-Noise Sub-$mu$W/Channel ADC-Direct Neural Recording With 200-mV/ms Transient Recovery T

机译:Sub- $ mu $ V rms -噪声Sub- < inline-formula> $ mu $ 具有200mV / ms瞬态恢复T的通道ADC直接神经记录

获取原文
获取原文并翻译 | 示例
           

摘要

Integrated recording of neural electrical potentials from the brain poses great challenges due to stringent dynamic range requirements to resolve small-signal amplitudes buried in noise amidst large artifact and stimulation transients, as well as stringent power and volume constraints to enable minimally invasive untethered operation. Here, we present a 16-channel neural recording system-on-chip with greater than 90-dB input dynamic range and less than 1-μVrms input-referred noise from dc to 500 Hz, at 0.8-μW power consumption, and 0.024-mm2area per channel in a 65-nm CMOS process. Each recording channel features a hybrid analog-digital second-order oversampling analog-to-digital converter (ADC), with the biopotential signal coupling directly to the second integrator for high conversion gain and dynamic offset subtraction in the digital domain. This bypasses the need for high-pass filtering pre-amplification in neural recording systems, which often leads to signal distortion. The integrated ADC-direct neural recording offers record figureof-merit with a noise efficiency factor (NEF) of the combined front end and ADC of 1.81, and a corresponding power efficiency factor (PEF) of 2.6. Predictive digital autoranging of the binary quantizer further supports rapid transient recovery while maintaining fully dc-coupled operation. Hence, the neural ADC is capable of recording ≤ 0.01-Hz slow potentials as well as recovering from ≥ 200-mVpp transients within ≤ 1 ms that are important prerequisites to effective electrocortical recording for brain activity mapping. In vivo recordings from marmoset primate frontal cortex demonstrate its unique capabilities in resolving ultra-slow local field potentials indicative of subject arousal state.
机译:由于需要严格的动态范围来解决大伪影和刺激瞬变中掩埋在噪声中的小信号幅度,以及严格的功率和音量限制以实现微创的束缚式操作,因此,对来自大脑的神经电势的集成记录提出了巨大的挑战。在这里,我们介绍了一种16通道神经记录片上系统,其输入动态范围大于90dB,直流至500Hz的输入参考噪声小于1-μVrms,功耗为0.8μW,而0.024- mm n 在65纳米CMOS工艺中,每个通道2纳秒/ narea。每个记录通道均具有一个混合模数二阶过采样模数转换器(ADC),其生物电势信号直接耦合至第二个积分器,以实现数字域中的高转换增益和动态偏移减法。这就避免了在神经记录系统中对高通滤波预放大的需求,这通常会导致信号失真。集成的ADC直接神经记录提供了优异的品质记录,组合前端和ADC的噪声效率系数(NEF)为1.81,相应的功率效率系数(PEF)为2.6。二进制量化器的预测数字自动调整范围进一步支持快速瞬态恢复,同时保持完全的直流耦合操作。因此,神经ADC能够记录≤0.01 Hz的慢电位,并能在≤1 ms内从≥200 mVpp的瞬态中恢复,这是有效记录大脑皮层活动电皮质的重要前提。 mar猴灵长类动物额叶皮层的体内记录显示了其解决指示对象唤醒状态的超慢局部场电势的独特能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号