...
首页> 外文期刊>Solar Physics >On Solving the Coronal Heating Problem
【24h】

On Solving the Coronal Heating Problem

机译:关于解决日冕加热问题

获取原文
获取原文并翻译 | 示例

摘要

The question of what heats the solar corona remains one of the most important problems in astrophysics. Finding a definitive solution involves a number of challenging steps, beginning with an identification of the energy source and ending with a prediction of observable quantities that can be compared directly with actual observations. Critical intermediate steps include realistic modeling of both the energy release process (the conversion of magnetic stress energy or wave energy into heat) and the response of the plasma to the heating. A variety of difficult issues must be addressed: highly disparate spatial scales, physical connections between the corona and lower atmosphere, complex microphysics, and variability and dynamics. Nearly all of the coronal heating mechanisms that have been proposed produce heating that is impulsive from the perspective of elemental magnetic flux strands. It is this perspective that must be adopted to understand how the plasma responds and radiates. In our opinion, the most promising explanation offered so far is Parker's idea of nanoflares occurring in magnetic fields that become tangled by turbulent convection. Exciting new developments include the identification of the “secondary instability” as the likely mechanism of energy release and the demonstration that impulsive heating in sub-resolution strands can explain certain observed properties of coronal loops that are otherwise very difficult to understand. Whatever the detailed mechanism of energy release, it is clear that some form of magnetic reconnection must be occurring at significant altitudes in the corona (above the magnetic carpet), so that the tangling does not increase indefinitely. This article outlines the key elements of a comprehensive strategy for solving the coronal heating problem and warns of obstacles that must be overcome along the way.
机译:太阳日冕的加热问题仍然是天体物理学中最重要的问题之一。寻找一种确定的解决方案涉及许多挑战性的步骤,首先要确定能源,最后要对可观察到的数量进行预测,然后将这些数量与实际观测结果直接进行比较。关键的中间步骤包括对能量释放过程(将磁应力能或波能转化为热)和等离子体对加热的响应进行逼真的建模。必须解决各种困难的问题:高度不同的空间比例,日冕与低层大气之间的物理联系,复杂的微观物理学以及可变性和动力学。从元素磁通量链的角度来看,几乎所有已提出的日冕加热机制都会产生脉冲状的加热。必须采用这种观点来了解等离子体如何响应和辐射。在我们看来,迄今为止提供的最有前途的解释是帕克关于在湍流对流纠缠的磁场中发生纳米耀斑的想法。令人振奋的新进展包括将“次级不稳定性”识别为能量释放的可能机制,并证明了亚分辨率链中的脉冲加热可以解释某些很难理解的冠状环的某些观测特性。无论采用何种详细的能量释放机制,很明显,某种形式的磁重新连接都必须在电晕中的显着高度(在电磁地毯上方)发生,以使纠缠不会无限期地增加。本文概述了解决日冕加热问题的全面策略的关键要素,并警告了在此过程中必须克服的障碍。

著录项

  • 来源
    《Solar Physics 》 |2006年第1期| 41-77| 共37页
  • 作者

    James A. Klimchuk;

  • 作者单位

    Space Science Division Naval Research Laboratory;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号