首页> 外文期刊>Solar Energy >Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector
【24h】

Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector

机译:建筑物集成光伏/热能(BIPVT)太阳能收集器的性能

获取原文
获取原文并翻译 | 示例
       

摘要

The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel-Whillier model and was validated with experimental data from testing on a prototype BIPVT collector.rnThe results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coatcd colour steel, without significant decreases in efficiency.rnFinally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier.
机译:结合光伏和太阳能集热器(PVT收集器)以提供电能和热能的想法是直到最近才受到关注的领域。尽管PVT不像太阳能热系统那么普遍,但将光伏和太阳能集热器集成到建筑物的墙壁或屋顶结构中可能会为使用可再生太阳能技术提供更大的机会。在这项研究中,通过使用改良的Hottel-Whillier模型从理论上分析了新型建筑一体化光伏/热能(BIPVT)太阳能集热器的设计,并通过对原型BIPVT集热器进行测试的实验数据进行了验证。关键的设计参数,例如鳍片效率,PV电池及其支撑结构之间的热导率以及层压方法对BIPVT的电效率和热效率都有重大影响。此外,研究表明BIPVT可以由成本较低的材料制成,例如预涂彩钢,而不会显着降低效率。rn最后,表明通过将BIPVT集成到建筑物中而不是建筑物上可以得到结果。在较低成本的系统中。这一发现说明了这一点,即当将BIPVT的后部集成到封闭的充满空气的阁楼上方的屋顶中时,可能不需要对BIPVT的后部进行隔热,因为该空气空间可作为被动隔热屏障。

著录项

  • 来源
    《Solar Energy》 |2009年第4期|445-455|共11页
  • 作者单位

    Department of Engineering, University of Waikato, Hamilton 3240, New Zealand;

    Department of Engineering, University of Waikato, Hamilton 3240, New Zealand;

    School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia;

    Department of Engineering, University of Waikato, Hamilton 3240, New Zealand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photovoltaics; solar thermal; photovoltaic/thermal; BIPVT;

    机译:光伏太阳热能光伏/热力;静脉血栓;
  • 入库时间 2022-08-18 00:26:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号