首页> 外文学位 >Modeling of photovoltaic thermal systems with transpired solar collectors integrated in building operation simulation.
【24h】

Modeling of photovoltaic thermal systems with transpired solar collectors integrated in building operation simulation.

机译:使用集成在建筑物运行模拟中的蒸发式太阳能收集器对光伏热力系统进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Solar energy is so far the most promising and sustainable alternative energy source to fossil fuels. The new solar technology proposed in this research, building-integrated photovoltaic-thermal (BIPV/T) systems, can be attached to the facade or replace conventional cladding, enabling on-site generation of solar electricity and heat, which can fulfill a significant portion of the building energy requirements.;High-resolution, three-dimensional Computational Fluid Dynamics (CFD) models are developed to investigate the complex airflow and heat transfer mechanisms in BIPV/T systems and provide a solid foundation that supports the formulation of thermal analysis models. The CFD models are validated using data from an experimental set-up in a state-of-the-art solar simulator facility, in terms of the cavity exit air temperature (the error less than 1°C), the stream-wise development of plate surface temperature (the error less than 1°C), and vertical profiles of stream-wise velocity (average error within 10 %) and turbulent kinetic energy (average error within 20 %).;Energy prediction models for both corrugated UTCs and UTCs integrated with BIPV/T systems are established to evaluate their performance (electrical and thermal energy output, outlet air temperature, etc.) for different weather (incident solar radiation and wind speed) and system design parameters (corrugation geometry, PV module coverage ratio, suction velocity, etc.). Comprehensive Nusselt number and effectiveness correlations, representing both the exterior and interior convective heat transfer processes in BIPV/T systems, are obtained from the CFD simulations and subsequently used in the energy models. Experimental data for prototype BIPV/T collectors installed at Purdue's Architectural Engineering Lab are used to validate the energy models. Comparison between the model predictions and the experimental data verifies the dynamic response of the collectors to weather and operating conditions, with the root mean square error within 1 °C in terms of cavity exit air temperature for the UTC configuration and within 2 °C (PV surface temperature) for the model of UTC with PV modules. The methodology for the analysis of the thermal boundary layer development and convective heat transfer process can be generalized to uniform approaching flow over corrugated plates with discrete suction, while the Nusselt number and effectiveness correlations and the physical modeling approach can be adopted to other BIPV/T systems.;Then the energy models are implemented in building simulation platforms to enable integration of BIPV/T with building HVAC systems (air handling unit and radiant floor heating) and active thermal storage systems. Finally, a deterministic model-predictive control algorithm is formulated for the integrated solar system. This includes building up a detailed dynamic system model in TRNSYS, presenting a system identification approach to obtain simplified gray and black-box models that capture the relevant system dynamics and are computationally efficient for implementation in real controllers, formulating the cost function and setting up the constraints and the optimization environment, and examining the potential impacts associated with the prediction accuracy of the solar irradiance, which is the most significant disturbance acting on the system. The energy saving potential of the integrated system and the predictive controller is investigated in comparison with baseline operation strategies used in commercial buildings, using the Hydronic Laboratory at Purdue's Living Laboratories as a simulation test-bed. The investigation shows that efficient integration concepts and optimal control strategies are necessary to predict and plan the energy cost for the integrated solar system, resulting in total energy savings for the integrated solar system that can be up to 45 %. The modeling representations and approaches developed in this study can be generalized and extended to other commercial buildings with different integrated solar systems, HVAC systems and energy storage. (Abstract shortened by UMI.).
机译:迄今为止,太阳能是化石燃料最有前途和可持续的替代能源。这项研究中提出的新太阳能技术,即建筑物集成的光伏热能(BIPV / T)系统,可以连接到外墙或代替传统的外墙,从而可以现场产生太阳能和热能,从而可以满足大部分开发了高分辨率的三维计算流体动力学(CFD)模型,以研究BIPV / T系统中复杂的气流和传热机制,并为支持热分析模型的制定提供了坚实的基础。使用腔室出口空气温度(误差小于1°C),流向展开等方面的最新技术,利用先进的太阳能模拟器设施中的实验数据验证了CFD模型的有效性。板表面温度(误差小于1°C),垂直方向流速(平均误差在10%以内)和湍动能(平均误差在20%以内);波纹UTC和UTC的能量预测模型已建立与BIPV / T系统集成的功能,以评估其在不同天气(入射太阳辐射和风速)下的性能(电能和热能输出,出风温度等)和系统设计参数(波纹几何形状,光伏组件覆盖率,吸气速度等)。通过CFD模拟获得了代表NPV的外部和内部对流传热过程的综合Nusselt数和有效性相关性,然后将其用于能量模型中。普渡大学建筑工程实验室安装的BIPV / T收集器原型的实验数据用于验证能量模型。模型预测和实验数据之间的比较验证了集热器对天气和运行条件的动态响应,根据UTC配置的腔出口空气温度,均方根误差在1°C以内,在2°C以内(PV表面温度)用于带有光伏模块的UTC模型。热边界层发展和对流传热过程的分析方法可以推广到具有离散吸力的瓦楞板上均匀的接近流动,而其他的BIPV / T可以采用Nusselt数和有效性的相关性以及物理建模方法然后,在建筑物模拟平台中实施能源模型,以实现BIPV / T与建筑物HVAC系统(空气处理单元和地板辐射采暖系统)和主动式蓄热系统的集成。最后,为集成太阳能系统制定了确定性模型预测控制算法。这包括在TRNSYS中建立详细的动态系统模型,提出一种系统识别方法,以获取简化的灰色和黑匣子模型,这些模型捕获相关的系统动力学并在实际控制器中具有较高的计算效率,制定成本函数并设置约束和最优化环境,并检查与太阳辐照度预测准确性相关的潜在影响,这是作用在系统上的最大干扰。使用普渡大学生活实验室的水力实验室作为模拟试验台,与商业建筑中使用的基准操作策略进行了比较,研究了集成系统和预测控制器的节能潜力。调查表明,有效的集成概念和最佳控制策略对于预测和规划集成太阳能系统的能源成本是必要的,从而使集成太阳能系统的总节能量高达45%。本研究中开发的建模表示和方法可以推广并扩展到具有不同集成太阳能系统,HVAC系统和能量存储的其他商业建筑。 (摘要由UMI缩短。)。

著录项

  • 作者

    Li, Siwei.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Civil.;Engineering Architectural.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号