首页> 外文期刊>Solar Energy >Quasi-Monte Carlo ray tracing algorithm for radiative flux distribution simulation
【24h】

Quasi-Monte Carlo ray tracing algorithm for radiative flux distribution simulation

机译:用于辐射助熔剂分布仿真的准蒙特卡罗射线跟踪算法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Monte Carlo ray tracing (MCRT) is a fundamental simulation method for central receiver systems(CRSs). MCRT is an effective method to describe the radiative flux distribution on the receiver surface reflected by either a single heliostat or all heliostats in a heliostat field. In this paper, a GPU-based ray-tracing simulation method, namely, quasi-Monte Carlo ray tracing (QMCRT), is proposed to address problems of both efficiency and accuracy. First, QMCRT, as a bidirectional approach, can avoid unnecessary intersection calculations. This method also facilitates sunshape sampling and heliostat surface slope error sampling, which can achieve memory and run-time efficiency. Second, in the traditional approaches, the simulated maximum radiative flux (MaxRF) is randomly higher than the reference value, even if tens of millions of rays are traced. In QMCRT, the problem is solved by applying a trimmed mean smoothing operation to the generated radiative flux distribution. As a result, a stable MaxRF value approaching the reference value is obtained, while the total power remains almost unchanged. The results obtained for both synthetic and real heliostats obtained using QMCRT are substantially in keeping with the results obtained using established computational tools. QMCRT is two orders of magnitude faster than the traditional MCRT method when addressing traditional one-reflection CRS case. Compared with the state-of-the-art GPU-based grid ray tracing (GRT) approach, QMCRT is equally fast but generates a more accurate result. QMCRT also has an advantage in terms of efficiency for CRS compared with two well-known simulation software tools, i.e., SolTrace and Tonatiuh.
机译:Monte Carlo Ray跟踪(MCRT)是中央接收系统(CRSS)的基本仿真方法。 MCRT是描述由唯一的Heliostat或所有Heliostat领域中反映的接收器表面上的辐射助焊剂分布的有效方法。本文提出了一种基于GPU的射线跟踪模拟方法,即Quasi-Monte Carlo Ray跟踪(QMCRT),以解决效率和准确性的问题。首先,作为双向方法,QMCRT可以避免不必要的交叉点计算。该方法还促进了Sunshape采样和Heliostat表面斜率误差采样,可以实现内存和运行时效率。其次,在传统方法中,即使追踪数百万光线,模拟的最大辐射通量(MAXRF)也是随机高于参考值的。在QMCRT中,通过将修剪平均平滑操作应用于所产生的辐射通量分布来解决问题。结果,获得了接近参考值的稳定MAXRF值,而总功率几乎保持不变。使用QMCRT获得的合成和真正的预想差子获得的结果基本上与使用已建立的计算工具获得的结果保持。在寻址传统的一反射CRS案例时,QMCRT比传统的MCRT方法快两个数量级。与最先进的基于GPU的网格射线跟踪(GRT)方法相比,QMCRT同样快速,但产生更准确的结果。与两个众所周知的仿真软件工具,即索尔特拉丘和吨位相比,QMCRT在CR的效率方面也具有优势。

著录项

  • 来源
    《Solar Energy》 |2020年第1期|167-182|共16页
  • 作者单位

    Zhejiang Univ State Key Lab CAD & CG Hangzhou 310058 Peoples R China;

    Zhejiang Univ State Key Lab CAD & CG Hangzhou 310058 Peoples R China|Wenzhou Univ Coll Comp Sci & Artificial Intelligence Wenzhou 325006 Peoples R China;

    Zhejiang Univ State Key Lab CAD & CG Hangzhou 310058 Peoples R China;

    Zhejiang Univ Inst Ind Proc Control Coll Control Sci & Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab CAD & CG Hangzhou 310058 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Central receiver system; Monte Carlo ray tracing; Graphics processing unit; Radiative flux distribution; Maximum radiative flux;

    机译:中央接收系统;蒙特卡罗射线跟踪;图形处理单元;辐射助焊剂分布;最大辐射通量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号