首页> 外文期刊>Solar Energy >Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650°C
【24h】

Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650°C

机译:超临界二氧化碳动力循环设计和配置优化,以最大限度地减少在650°C下运行的熔盐动力塔的能源的调情成本

获取原文
获取原文并翻译 | 示例
           

摘要

This analysis investigates the design, cost, and performance of the simple, recompression, and partial-cooling configurations of the supercritical carbon dioxide power cycle integrated with a molten salt power tower concentrating solar power system. This paper uses a steady-state model to design each cycle with varying amounts of recuperator conductance to understand performance and cost trade-offs. The recompression cycle can achieve a higher thermal efficiency than the partial-cooling cycle, and the partial-cooling cycle achieves a higher thermal efficiency than the simple cycle. The partial-cooling cycle is the most expensive cycle because it requires more total turbomachinery capacity. However, the partial-cooling cycle has the largest temperature range of heat input. This feature leads to cheaper two-tank thermal energy storage, higher receiver efficiencies, and lower mass flow rates in the power tower. Crucially, the lower mass flow rates significantly reduce pump electricity consumption relative to the recompression-cycle system. Consequently, this study finds that the power tower system integrated with the partial-cooling cycle is both cheaper and generates more net electricity than systems integrated with the other two cycles. Finally, this paper presents a parametric study on the air-cooler approach temperature and shows that small approach temperatures can improve cycle efficiency and increase the temperature range of heat input, which can lead to smaller optimal approach temperatures than may be expected.
机译:该分析研究了简单,重新压缩和部分冷却配置的设计,成本和性能和熔盐功率塔集中太阳能系统集成的超临界二氧化碳动力循环的部分冷却配置。本文采用稳态模型来设计每个循环,各种循环,可恢复量电缆,以了解性能和成本折衷。再压缩循环可以实现比部分冷却循环更高的热效率,并且部分冷却循环达到比简单循环更高的热效率。部分冷却循环是最昂贵的循环,因为它需要更多的总涡轮机械能力。然而,部分冷却循环具有最大的热输入温度范围。该功能导致电力塔中更便宜的双罐热能存储,更高的接收器效率和较低的质量流速。至关重要的是,较低的质量流量率显着降低相对于再压缩循环系统的泵电消耗。因此,该研究发现,与部分冷却循环集成的电力塔系统既便宜,并且比与其他两个周期集成的系统产生更多的净电力。最后,本文介绍了对空气冷却器的温度的参数研究,并表明小的方法温度可以提高循环效率并增加热输入的温度范围,这可能导致比预期更小的最佳方法温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号