首页> 外文期刊>Solar Energy >Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650℃
【24h】

Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650℃

机译:超临界二氧化碳功率循环设计和配置优化,可最大程度地降低在650℃下运行的熔盐功率塔的能源平均成本

获取原文
获取原文并翻译 | 示例
           

摘要

This analysis investigates the design, cost, and performance of the simple, recompression, and partial-cooling configurations of the supercritical carbon dioxide power cycle integrated with a molten salt power tower concentrating solar power system. This paper uses a steady-state model to design each cycle with varying amounts of recuperator conductance to understand performance and cost trade-offs. The recompression cycle can achieve a higher thermal efficiency than the partial-cooling cycle, and the partial-cooling cycle achieves a higher thermal efficiency than the simple cycle. The partial-cooling cycle is the most expensive cycle because it requires more total turbomachinery capacity. However, the partial-cooling cycle has the largest temperature range of heat input. This feature leads to cheaper two-tank thermal energy storage, higher receiver efficiencies, and lower mass flow rates in the power tower. Crucially, the lower mass flow rates significantly reduce pump electricity consumption relative to the recompression-cycle system. Consequently, this study finds that the power tower system integrated with the partial-cooling cycle is both cheaper and generates more net electricity than systems integrated with the other two cycles. Finally, this paper presents a parametric study on the air-cooler approach temperature and shows that small approach temperatures can improve cycle efficiency and increase the temperature range of heat input, which can lead to smaller optimal approach temperatures than may be expected.
机译:该分析研究了与熔融盐电​​力塔集中式太阳能发电系统集成的超临界二氧化碳功率循环的简单,再压缩和部分冷却配置的设计,成本和性能。本文使用稳态模型设计具有不同数量的换热器电导的每个周期,以了解性能和成本之间的权衡。与部分冷却循环相比,再压缩循环可以获得更高的热效率,并且与简单循环相比,部分冷却循环可以获得更高的热效率。部分冷却循环是最昂贵的循环,因为它需要更多的涡轮机械总容量。然而,部分冷却循环具有最大的热输入温度范围。此功能可导致更便宜的两罐式热能存储,更高的接收器效率以及更低的功率塔质量流量。至关重要的是,相对于再压缩循环系统,较低的质量流率显着降低了泵的电力消耗。因此,这项研究发现,与部分冷却循环集成的电力塔系统比与其他两个循环集成的系统既便宜,又产生更多的净电力。最后,本文对空气冷却器的进场温度进行了参数研究,结果表明,较小的进场温度可以提高循环效率并增加热输入的温度范围,从而导致最佳进场温度比预期的要小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号